宮崎県衛生環境研究所年報

No.28 (2016)
Annual Report of
the Miyazaki Prefectural Institute for
Public Health and Environment

宮崎県衛生環境研究所
目次

Ⅰ 事業概要

1 組織別業務の状況... 1
 企画管理課... 1
 食品衛生検査管理監... 2
 微生物部.. 3
 衛生化学部... 20
 環境科学部... 24

2 講師派遣及び研修指導 .. 31

3 研究成果発表会 ... 32

4 調査研究課題の外部評価 ... 33

Ⅱ 発表

1 誌上発表 ... 39
 ○ Cyclodextrin Pyruvate Solid Medium（CPSM 培地）を用いた百日咳菌の分離 39
 ○ The proline residue at position 319 of BvgS is essential for BvgAS activation in
 Bordetella pertussis ... 39

2 学会及び研究発表会 .. 40
 ○ 乳児下気道炎入院症例における百日咳の検討 ... 40
 ○ 下痢原性大腸菌およびノロウイルス感染症の発生動向 40
 ○ 改良型 CSM 培地を用いた百日咳菌の分離について ... 40
 ○ 來院時心肺停止状態であった乳児百日咳の一例 ... 41
 ○ 無症候性保菌者からの百日咳菌分離について ... 41
 ○ 比較ゲノムによる腸管出血性大腸菌 O145∶H28 の多様性解析 42
 ○ 国内外で分離された 521 株の腸管出血性大腸菌 O26 の全ゲノム系統解析と
 病原遺伝子レパートリー解析 ... 42
Ⅲ 調査研究

- 感染症発生動向調査事業における宮崎県の患者発生状況・2016年（平成28年）........ 45
- 宮崎県の感染症発生動向調査事業におけるウイルス検出報告（2016年）................ 55
- 乳糖分解性を指標とした下痢原性大腸菌の解析.. 60
- 本県における重症熱性血小板減少症候群に関する実態調査（第2報）...................... 64
- 宮崎県における環境放射能調査（第29報）.. 70
- 調理におけるアレルゲンの移行性の検証... 74
- 宮崎県沿岸海域におけるCODに関連する有機物指標と栄養塩類等について............. 77
- 九州・沖縄・山口地方酸性雨共同調査研究（第Ⅳ期）について.............................. 84
- 小丸川の底生動物相と水質.. 89
- 川内川の底生動物相と水質.. 95
- 県内河川における底生動物の出現状況と理化学検査との相関............................. 101
- 水辺環境調査の指導者育成研修会の現状と満足度... 108

Ⅳ 組織機構の概要

1. 沿革... 112
2. 組織機構と業務.. 113
3. 職員配置表... 114
4. 予算の概要.. 115
5. 庁舎の概要.. 115
I 事業概要

1 組織別業務の状況
 企画管理課
 食品衛生検査管理監
 微生物部
 衛生化学部
 環境科学部

2 講師派遣及び研修指導

3 研究成果発表会

4 調査研究課題の外部評価
組織別業務の状況

企画管理課

企画管理課の主な業務は、予算管理、庁舎管理、宮崎県感染症情報センターの運営、調査研究の企画調整及び保健衛生・環境保全に関する情報の収集・解析・提供等である。

宮崎県感染症情報センターの運営

感染症発生動向調査事業は、感染症の防止及び蔓延防止を目的として、国や都道府県等が主体となり、感染症の発生情報を正確に把握・分析し、その結果を的確に提供・公開するもので、1981（昭和56）年度に開始された。当研究所は、1994（平成7）年度から情報解析の拠点として、調査事業で集められた情報の解析と還元を行ってきた。新感染症法が施行された2000（平成12）年4月からは宮崎県感染症情報センターとして、県内保健所から報告された患者情報、疑似症情報及び病原体情報を、全国情報とあわせて保健所や医療機関、マスコミ、教育委員会等県内の関係機関に提供するとともに、当研究所のホームページhttp://www.pref.miyazaki.lg.jp/contents/org/fukushi/eikanken/に、感染症週報として掲載している。

(1) 週報

県内全ての医療機関から報告される全数把握対象疾患及び指定届出機関（2016年39週まで県内72所、40週以降71所の定点医療機関）から報告される定点把握対象疾患の患者情報等を集計・分析し、その結果とともに当研究所微生物部で分離同定された病原体のデータをオンライン報告するとともに、このデータの解析を行い、保健所、指定届出機関を含む医療機関、マスコミ等に、各種感染症について病原体に関する情報を提供した。

(2) 月報

指定届出機関（県内20所）から毎月報告される定点把握対象疾患の5類感染（STD及び薬剤耐性菌感染症）の患者情報等を集計・分析し、その結果を保健所や医療機関等に毎月1回提供した。

調査研究課題の企画調整

当研究所で実施する調査研究課題の公平性・客観性・透明性を確保するため、外部有識者で構成する調査研究評価委員会を開催するなど、調査研究課題の企画調整を行った。

病原微生物検出情報

厚生労働省及び国立感染症研究所を主体に運用されている病原体検出情報システムに、微生物部で分離同定された病原体のデータをオンライン報告するとともに、このデータの解析を行い、保健所、指定届出機関を含む医療機関、マスコミ等に、各種感染症について病原体に関する情報を提供した。

情報通信システムの活用

業務専用ネットワークや県庁LANシステム等を活用し、試験検査や調査研究を円滑に推進するため、情報セキュリティリーダーが中心となって適切な情報管理を行った。また、ホームページを適宜更新・充実し、保健衛生及び環境保全に関する情報の提供に努めた。
食品衛生検査管理監

食品衛生検査業務管理としての試験検査の適正管理運営基準（Good Laboratory Practice: GLP）は、食品衛生法に基づく試験検査を適正に実施し、試験検査結果の信頼性の確保を図る目的で導入されている。

本県では、1998年（平成10年）度に県の食品衛生検査施設である当研究所と8保健所及び5食肉衛生検査所を対象にGLPが導入され、検査部門と独立した信頼性確保部門責任者として食品衛生検査管理監が当研究所に配置された。

(信頼性確保部門責任者の主な業務)

・食品衛生検査等の業務管理について、食品衛生検査施設の内部点検の定期的実施
・食品衛生検査施設の内部精度管理
・食品衛生検査施設の外部精度管理調査に関する計画調整

2016年（平成29年）年度の業務内容は、次のとおりである。

1 内部点検

2016年8月から9月に第1回目の内部点検を、2017年1月から2月に第2回目の内部点検を実施した。標準作業書をはじめ各種記録簿等を確認とともに、試薬等の管理、検査等の実施、検査結果の通知等について詳細に点検した。

その結果、1施設に対して機械器具の管理等に関する改善を指導した。

2 内部精度管理

当研究所、食肉衛生検査所及び県内登録検査機関1施設に対して、次の検査項目に関する模擬試料を作製・配付して精度管理を実施した。

・細菌同定検査（サルモネラ属菌）
・残留動物用医薬品定量検査（スルファジミジン）

その結果、サルモネラ属菌の同定では全ての施設において正しく同定されていた。残留動物用医薬品定量検査では全測定値の回収率は90.6%（標準偏差 8.7%）であった。いずれの施設においても平均回収率（5回繰り返し検査）は、精度管理の一般ガイドラインの目安である70～120%の範囲内に納まり、併行精度は10%未満であった。

3 外部精度管理調査

一般財団法人食品薬品安全センターが実施する精度管理調査に、各検査施設の参加を調整し、(3)のとおり指導等を行った。

(1) 微生物学的検査

・衛生環境研究所
 一般細菌数測定検査（腸内細菌科菌群、黄色プドウ球菌、サルモネラ属菌）
 細菌同定検査（腸内細菌科菌群、黄色プドウ球菌、サルモネラ属菌）
・食肉衛生検査所（都城・高崎・小林・都農・日向）
 細菌同定検査（サルモネラ属菌）

(2) 理化学的検査

・衛生環境研究所
 食品添加物定量検査（安息香酸）
 残留農薬定量検査（チオベンカルブ、マラチオン、クロルピリホス）
 残留農薬定性検査（クロルピリホス、マラチオン、チオベンカルブ）
 残留動物用医薬品定量検査（スルファジミジン）
・食肉衛生検査所（都城・高崎・都農）
 残留動物用医薬品定量検査（スルファジミジン）

(3) 検査報告書による所見

微生物学的検査は、細菌数測定検査、細菌同定検査のいずれについても良好な成績であった。

理化学的検査では、残留農薬（マラチオン）の定量検査において回収率の不足していた施設があり、改善を指導した。

4 その他

本県の「食品衛生検査施設等における検査等の業務管理要綱」に基づき、検査部門責任者協議会において取去検査検体の取扱い、微生物検査手順及び薬剤の管理等に関して、各検査機関に対して、適正な業務管理の推進を指導した。また、検査担当者を対象に、当研究所の微生物部及び衛生化学部において、検査技能の向上を目的とした微生物及び理化学の各種実務研修を実施した。
微生物部

微生物部は、モニタリング業務（感染症流行予測調査、感染症発生動向調査、GLPに基づく食品収去検査及び食中毒汚染実態調査、宮崎県蚊媒介感染症モニタリング事業、危機管理業務（感染症の集団発生や食中毒発生時の検査・解析、新型インフルエンザ対応等）、行政依頼検査、保健所や食肉衛生検査所の検査担当者に対する研修指導、検査結果の信頼性確保のための精度管理に加え、調査研究を実施している。また、特定感染症検査や土呂久地区住民観察検診も実施している。

2016（平成28）年度の業務の概要は、次のとおりである。

[ウイルス、リケッチア]

1 感染症流行予測調査

厚生労働省は、流行の予測や抗体保有状況の把握を目的として、国立感染症研究所、各都道府県衛生研究所等との協働で、予防接種対象疾患の感受性調査及び感染源調査を行っている。当研究所では、本調査の一環として、日本脳炎感染源調査、インフルエンザ感染症、麻疹感受性調査を実施した。

(1) 日本脳炎感染源調査

前年（2015年）の夏季に日本脳炎ウイルスに曝露する機会がなかった生後5〜8カ月齢の仔豚を対象に、豚血清中の日本脳炎ウイルスに対するHI抗体価を測定した。HI抗体価は、1:10以上を陽性とし、1:40以上のHI抗体価を呈した血清について、2-ME感受性抗体（IgM抗体；陽性の場合新鮮感染を示す）を測定した。

採血場所は2015（平成27）年度同様、県都城食肉衛生検査所の1ヶ所とした。採血時期は7月上旬から9月中旬にかけて計8回、1回あたり11頭を検査した。

8月上旬に2016年度初めてHI抗体陽性となり、新鮮感染豚を認めた（2-ME陽性率100%）。8月中旬・下旬、9月上旬のいずれもHI抗体陽性率36%となり、8月下旬は新鮮感染豚を認めた（2-ME陽性率25%）。9月中旬、9月上旬に新鮮感染豚は認められなかった。9月中旬はHI抗体陽性率27%となったが、新鮮感染豚は認められなかった。表1）

本県では、新鮮感染豚が確認された時点で日本脳炎ウイルス注意報を発令し、抗体陽性率が50%を超えると、新鮮感染豚を認めた時点で日本脳炎注意報を発令している。九州では、本県、鹿児島県及び沖縄県は陽性率が50%未満で、他県は陽性率が50%以上となった。また、国内では、本調査を行っている33都道府県中17県で9月下旬までに抗体陽性率が50%以上となった。

表1 2016年度 と畜場搬入豚の日本脳炎HI抗体保有状況

<table>
<thead>
<tr>
<th>採血</th>
<th>検査</th>
<th>HI抗体価</th>
<th>陽性数</th>
<th>陽性率（%）</th>
<th>2-ME感受性抗体保有率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>月日</td>
<td>頭数</td>
<td><10</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>7.04</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.11</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.25</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.01</td>
<td>11</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8.22</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8.29</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9.05</td>
<td>11</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>9.12</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>27</td>
</tr>
</tbody>
</table>

(2) インフルエンザ感受性調査

県内より1地区を選定し、9年齢群270名（0〜4歳:54名、5〜9歳:21名、10〜14歳:24名、15〜19歳:27名、20〜29歳:44名、30〜39歳:25名、40〜49歳:25名、50〜59歳:25名、60歳以上:25名）から同意を得て、2016年7月1日から9月14日の間に収集した血清を対象とした。下記4抗原（2016シーズンのワクチン株）を用い、赤血球凝集抑制抗体（HI抗体）価の測定を行った。

-3-
「感染防御に有効な免疫を有する」と一般的にみなされるHI抗体価40倍（1:40）以上の抗体保有率は次のとおりであった。

（以下、抗体保有率60%以上を「高い」、40%以上60%未満を「比較的高い」、25%以上40%未満を「中程度」、10%以上25%未満を「低い」、5%未満を「きわめて低い」と表わす。）

（a）A/California（カリフォルニア）/7/2009 A(H1N1)pdm09に対する抗体保有率
5～9歳の各年齢群では60%以上(60.0～90.5%)と高く、特に5～9歳群で最も高い保有率(90.5%)であった。60歳以上の年齢群では比較的高い保有率(48.0%)であった。0～4歳群では比較的低い保有率(22.2%)であった。

（b）A/Hong Kong（香港）/4801/2014 A(H3N2)に対する抗体保有率
5～19歳の各年齢群及び60歳以上の年齢群では60%以上(63.0～85.7%)と高い保有率であった。30～39歳の年齢群では比較的高い保有率(44.0%)を示し、20～29歳及び40～59歳の各年齢群では中程度(32.0～38.6%)であった。0～4歳群では比較的低い保有率(16.7%)であった。

（c）B/Phuket（プーケット）/3073/2013 B型（山形系統）に対する抗体保有率
20～29歳の年齢群で最も高い保有率(84.1%)を示し、15～19歳の年齢群及び30～49歳の各年齢群では比較的高い保有率(40.0～52.0%)であった。しかしこ～14歳の各年齢群及び50歳以上の各年齢群では中程度以下の保有率(3.7～37.5%)を示し、特に0～4歳群ではきわめて低い保有率(3.7%)であった。

（d）B/Texas（テキサス）/2/2013 B型（ビクトリア系統）に対する抗体保有率
全ての年齢群で40%以下であり、50歳以上の年齢群で比較的低い保有率(12.0～24.0%)を示し、5～9歳の年齢群では低い保有率(9.5%)を示した。0～4歳の年齢群の抗体保有率は0.0%であった。

図1 2016年度 宮崎県における年齢別HI抗体保有状況
麻疹感受性調査
インフルエンザ感受性調査と同様に9年齢群270名（0歳〜1歳頃25名、2〜3歳頃25名、4〜9歳頃25名、10〜14歳頃24名、15〜19歳頃27名、20〜24歳頃29名、25〜29歳頃25名、30〜39歳頃25名、40歳以上75名）から同意を得て2016年7月1日から9月14日の間収集した血清を対象に市販のキット（セロディア-麻疹、富士レビオKK）を用いたゼラチン粒子凝集法（PA法）によりPA抗体価を測定し、抗体保有率を算定した。

調査の結果を国の感染症流行予測調査報告書に準じて、PA抗体価16倍（1:16）、64倍（1:64）、128倍（1:128）、256倍（1:256）以上に区分し、表2に示す。

PA法では16倍以上が抗体陽性と判定されるが、国立感染症研究所によると、発症予防のためには少なくとも128倍以上、できれば256倍以上の抗体価が求められている。

16倍以上の抗体保有率は、0〜1歳群では48.0%にとどまるが、2〜9歳の各年齢群と25〜29歳群で96.0%、10〜14歳群で91.7%、40歳以上で98.7%と高くなっており、その他の年齢群では100%であった。0〜1歳群については、調査対象の25名中9名が1歳未満であり定期予防接種の年齢に達していなかった。

128倍以上の抗体保有率は、2〜3歳群で96.0%、20〜24歳群で100%、30〜39歳群で92.0%となっているが、その他の年齢群では90%未満となっており、特に10〜14歳群の抗体保有率は66.7%にとどまっている。

表2 2016年度 年齢群別麻疹PA抗体保有状況

<table>
<thead>
<tr>
<th>PA抗体価</th>
<th>0-1</th>
<th>2-3</th>
<th>4-9</th>
<th>10-14</th>
<th>15-19</th>
<th>20-24</th>
<th>25-29</th>
<th>30-39</th>
<th>40-</th>
</tr>
</thead>
<tbody>
<tr>
<td>≧1:16</td>
<td>48.0</td>
<td>96.0</td>
<td>96.0</td>
<td>91.7</td>
<td>100.0</td>
<td>100.0</td>
<td>96.0</td>
<td>100.0</td>
<td>98.7</td>
</tr>
<tr>
<td>≧1:64</td>
<td>48.0</td>
<td>96.0</td>
<td>96.0</td>
<td>79.2</td>
<td>92.6</td>
<td>100.0</td>
<td>92.0</td>
<td>96.0</td>
<td>97.3</td>
</tr>
<tr>
<td>≧1:128</td>
<td>48.0</td>
<td>96.0</td>
<td>84.0</td>
<td>66.7</td>
<td>81.5</td>
<td>100.0</td>
<td>88.0</td>
<td>92.0</td>
<td>84.0</td>
</tr>
<tr>
<td>≧1:256</td>
<td>48.0</td>
<td>92.0</td>
<td>68.0</td>
<td>54.2</td>
<td>55.6</td>
<td>89.5</td>
<td>72.0</td>
<td>88.0</td>
<td>78.7</td>
</tr>
<tr>
<td>検体数</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>27</td>
<td>19</td>
<td>25</td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

2 感染症発生動向調査事業
県内で発生しているウイルス感染症の原因ウイルスを特定することを目的に、2016年4月から2017年3月までの1年間に、病原体定点医療機関から当研究所に提出された654検体についてウイルス検索を行ったところ、353件のウイルスを分離・検出した。

2016年度の臨床診断名別のウイルス検査受付状況を表3に、ウイルス分離・検出状況を表4に示す。受付件数は上下気道炎、インフルエンザ、発疹性疾患及び不明熱が多かった。

ウイルス検出状況では、上下気道炎からパライフルエンザウイルスが多か検出され、インフルエンザからインフルエンザウイルスAH3亜型が多く検出された。また、発疹性疾患からはエコーウイルス18型及びパレコウイルス3型が多く検出された。

※2016年の感染症発生動向調査事業におけるウイルス検査状況の詳細については、後掲「Ⅲ調査研究」に掲載
<table>
<thead>
<tr>
<th>疾患名</th>
<th>月</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>上下気道炎</td>
<td>9</td>
<td>112</td>
</tr>
<tr>
<td>インフルエンザ</td>
<td>5</td>
<td>106</td>
</tr>
<tr>
<td>発疹性疾患</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>不明熱</td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>腦炎・脳症・熱性けいれん</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>無菌性髄膜炎</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>感染性胃腸炎</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>手足口病</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>麻疹</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>ヘルペス歯肉口内炎</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>デング熱</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>風疹</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>流行性筋痛症</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>心筋炎</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>ギランバレー症候群</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>RSウイルス感染症</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>伝染性紅斑</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>流行性耳下腺炎</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>結膜炎</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>急性麻痺</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>肝機能障害</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>チュングニア</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ヘルパンギーナ</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>水痘</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>突発性発疹</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>その他</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>計</td>
<td>39</td>
<td>654</td>
</tr>
<tr>
<td>疾患名</td>
<td>検査件数</td>
<td>検出件数</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>上下気道炎</td>
<td>112</td>
<td>52</td>
</tr>
<tr>
<td>インフルエンザ</td>
<td>106</td>
<td>104</td>
</tr>
<tr>
<td>発疹性疾患</td>
<td>98</td>
<td>52</td>
</tr>
<tr>
<td>不明熱</td>
<td>55</td>
<td>28</td>
</tr>
<tr>
<td>腦炎・脳症・熱性けいれん</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td>無菌性髄膜炎</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td>感染性胃腸炎</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>手足口病</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>麻疹</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>ヘルペス歯肉口内炎</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>デング熱</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>フィデクリ</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>流行性筋痛症</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>心筋炎</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>ギランバレー症候群</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>RSウイルス感染症</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>伝染性紅斑</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>流行性耳下腺炎</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>細菌症</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>毒性麻痺</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>肝機能障害</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>チケクシナイア</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ヘルパンギーナ</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>水痘</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>突発性発疹</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>その他</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>計</td>
<td>654</td>
<td>353</td>
</tr>
</tbody>
</table>
つつが虫病及び紅斑熱群リケッチア症

リケッチア感染症疑いで、県外を含む119名の患者について検査依頼があった（表5）。

Orientia tsutsugamushi（Gilliam, Karp, Kato, Kawasaki, Kuroki株）を抗原とした間接蛍光抗体法による血清診断、PCR法による遺伝子検査で、40名がつつが虫病と判定された。40名の患者のうち22名（55%）がKawasaki株に、8名（20%）がKuroki株に高い血清抗体価を示した。また、1名はKawasaki株、Kuroki株両方に高い血清抗体価を示した。残り9名はペア血清が取れないなどの理由から血清型は不明であった。

患者数は2015年度の約8割であった。

県内での感染が推定された39名の患者発生は1月から7月にかけてみられ、県央部での発生が13名と対前年度で増加したのに対し、県西部（23名）と県南部（2名）では減少した。特に県南部では14名から2名と大幅な減少であった（表6）。また、*Rickettsia japonica*（YH株）を抗原とした間接蛍光抗体法による血清診断で、119名中6名が日本紅斑熱と判定された。患者発生の時期は5月から6月と9月から10月であった。患者数は2015年度より減少したが、年度毎の変動があるため、今後も注意が必要である（表7）。

<table>
<thead>
<tr>
<th>年度</th>
<th>つつが虫病</th>
<th>日本紅斑熱</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>YH</td>
</tr>
<tr>
<td>2013</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

※: Kawasaki, Kuroki両方高抗体価を示す。
4 HIV抗体スクリーニング陽性確認検査

2004年(平成16)年12月より県の保健所において匿名受診によるHIV即日検査が始まり、2005年(平成17)年からは県内の全9保健所での匿名受診検査が可能となった。保健所における迅速検査では、イムノクロマトグラフィー法（ダイナスクリーン・HIV-1/2、アリーヤメディカル株式会社）を用いたHIV抗体のスクリーニング検査が実施され、その結果、偽陽性又は陽性のものについては、「保健所等におけるHIV即日検査のガイドライン第2版（2005年3月）」に従って、当研究所で確認検査を行っている。

2016年度の県内の保健所におけるHIV抗体スクリーニング検査件数は547件（宮崎市保健所実施分は36件を含む）であった。スクリーニング検査陽性（要確認検査）となったのは県中央保健所管内の3件で、いずれも抗原・抗体同時検査法（バイダスHIV DUO、日本ビオメディール株式会社）及びウエスタンブロット法（ラブブロット1,2、バイオラッド）で陽性となり、HIV-1と確認された。

5 食中毒（疑い）事例及び集団感染症事例におけるウイルス検査

急性胃腸炎の集団発生13事例、計121検体について検査依頼があった。全ての事例で検体として便が採取され、リアルタイムPCR法を用いてノロウイルスの検査をしたところ、9例でノロウイルスGII (うち1例はGII.6、2例はGII.17)が検出された。ノロウイルスが検出されなかった事例のうち1事例でロタウイルス、1事例でサポウイルスが検出された。

6 重症熱性血小板減少症候群

重症熱性血小板減少症候群(SFTS)は、2012年(平成24)年に第1例が確認され、2016年度まで37例(うち1例は届出無)の発生が確認された（表8）。

2016年度は41件のSFTS疑い例の検査依頼があり、5月から12月にかけて県北(5件)、県央(4件)の発生を確認した（表9）。

| 表8 SFTS検査依頼件数及び届出保健所別検出件数（2013〜2016年度） |
年度	依頼件数	SFTS	届出保健所					
			延岡HC	日向HC	高鍋HC	日南HC	都城HC	宮崎市HC
2013	37	10	3	1	2	4		
2014	47	8	2	1	2	3		
2015	47	9	3	1	3	2		
2016	41	9	5	1	6	2	13	
合計		36	13	1	1	6	2	

| 表9 2016年度 SFTS患者発生状況 |
届出保健所	2016年						
延岡保健所	5月	6月	7月	9月	10月	12月	合計
宮崎市保健所	2	2	1	1	4		
合計	2	2	2	1	1	1	9

7 その他

(1) レプトスピラ症

2016年度はレプトスピラ症を疑われた症例が13例あったが、陽性例は認められなかった。

(2) 蚊のモニタリング調査

健康増進課感染症対策室の依頼により「宮崎県蚊媒介感染症対策行動計画」に基づいて、2016年6月から9月の4ヶ月間、高千穂神社、西都原古墳群、鵜戸神宮、えびの

-9-
高原及び宮崎市中央公園の5ヶ所を定点と
定めて各月1回蚊を採取し、発生状況を調査
した。

採取した蚊についてヒトスジシマカの同
定と雌雄の鑑別を行い、デングウイルス
の遺伝子検査を実施した結果、採取した
ヒトスジシマカからデングウイルスは検
出されなかった（表10）。

表10 2016年度 蚊のモニタリング調査結果

<table>
<thead>
<tr>
<th></th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ヒトスジシマカ</td>
<td>その他</td>
<td>ヒトスジシマカ</td>
<td>その他</td>
</tr>
<tr>
<td>高千穂神社</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>西都原古墳群</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>鵜戸神宮</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>えびの高原</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>宮崎市中央公園</td>
<td>7</td>
<td>0</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>
細菌

1 感染症発生動向調査

2016年度に各定点病院及び協力機関から送付された検体140件及び依頼機関で分離され、血清型検査等を依頼された検体79件、計219件を検査した。

その結果、腸管出血性大腸菌(EHEC)4件、下痢原性大腸菌(EHECを除く)17件、サルモネラ属菌44件、百日咳菌26件等、計104件が分離・検出された（表11）。

表11 2016年度 感染症発生動向調査

<table>
<thead>
<tr>
<th>依頼疾患名</th>
<th>検出菌名</th>
<th>2016</th>
<th>2017</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>感染性胃腸炎</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下痢原性大腸菌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>腸管出血性大腸菌</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>腸管毒素原性大腸菌</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>腸管病原性大腸菌</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>腸管凝集性大腸菌</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>サルモネラ属菌</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>カンピロバクター属菌</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>発酵型溶連菌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>百日咳菌</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>パラ百日咳菌</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>レジオネラ属菌</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>アクチノミセス属菌</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>劇症型溶連菌</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>髄膜炎菌</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>マイコバクテリウム属菌</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>カルペネム耐性腸内細菌科細菌</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>検出数合計</td>
<td></td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>検体数合計</td>
<td></td>
<td>9</td>
<td>22</td>
<td>17</td>
</tr>
</tbody>
</table>

(1) 腸管系病原細菌

ア 下痢原性大腸菌

下痢原性大腸菌の検出状況を表12に示す。

2016年度は、県内で16例の腸管出血性大腸菌(EHEC)感染症の発生届出があり、このうち、当研究所に搬入された34検体について分離同定、血清型別及び毒素検を実施したところ、集団発生はみられなかった。

腸管毒素原性大腸菌(ETEC)は1株、腸管凝集付着性大腸菌(EAggEC)は3株、腸管病原性大腸菌(EPEC)は13株分離され、いずれも散発事例であった。

腸管出血性大腸菌感染症発生に伴う保健所別の接触者調査検体数を表13に示す。
表12 2016年度下痢原性大腸菌の検出状況

<table>
<thead>
<tr>
<th>血清型</th>
<th>病原因子</th>
<th>株数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHEC O1:7</td>
<td>VT1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EHEC O26:11</td>
<td>VT1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EHEC O157:7</td>
<td>VT1&VT2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ETEC OUT:H4</td>
<td>STp</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EPEC O103:4</td>
<td>eae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EPEC OUT:H2</td>
<td>eae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EPEC OUT:H21</td>
<td>eae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EPEC OUT:H40</td>
<td>eae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EPEC OUT:HUT</td>
<td>eae</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>EPEC OUT:HN</td>
<td>eae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EAggEC O86a:HN</td>
<td>aggR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EAggEC O111:H21</td>
<td>aggR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EAggEC O126:HUT</td>
<td>aggR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

表13 2016年度腸管出血性大腸菌感染症発生に伴う保健所別接触者調査検体数

<table>
<thead>
<tr>
<th>管内保健所</th>
<th>4月</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>8月</th>
<th>9月</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>日南 (1事例)</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>都城 (3事例)</td>
<td></td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>小林 (1事例)</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>高鍋 (1事例)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>日向 (2事例)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>高千穂 (1事例)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>合計 (9事例)</td>
<td></td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

サルモネラ属菌

感染症発生動向調査、食中毒有症状者等、給食従事者定期健康診断等及び食品に関連する検体について検査したところ、感染症発生動向調査及び給食従事者定期健康診断等の検体からサルモネラ属菌が分離された（表14）。

感染症発生動向調査では患者44名から16種類のサルモネラが血清型別され、2株については血清型別不能であった。血清型別では、S. Stanleyが6株と多く検出された。

給食従事者定期健康診断等により健康保菌者から分離されたサルモネラ菌株の血清型別依頼が28件あり、14種類27株の血清型が確認され、1株については血清型別不能であった。
表14 2016年度 サルモネラ属菌分離状況

<table>
<thead>
<tr>
<th>血清型名</th>
<th>抗原構造</th>
<th>分離総数</th>
<th>感染症発生動向調査</th>
<th>食中毒</th>
<th>給食従事者定期健康診断等</th>
<th>食品(収去調査等)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Stanley</td>
<td>O4∶d:1,2</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Schwarzengrund</td>
<td>O4∶d:1,7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Saintpaul</td>
<td>O4e,h:1,2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Derby</td>
<td>O4f,g:</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Agona</td>
<td>O4f,g,s:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Typhimurium</td>
<td>O4∶i:1,2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Typhimurium</td>
<td>O4i:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>S. Haifa</td>
<td>O4z10:1,2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>S. Braenderup</td>
<td>O7e,h:e,n,z15</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Thompson</td>
<td>O7k:1,5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Oranienburg</td>
<td>O7m,t:</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>S. Singapore</td>
<td>O7k:e,n,x</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Infantis</td>
<td>O7r:1,5</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Colindale</td>
<td>O7r:1,7</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Bareilly</td>
<td>O7y:1,5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Corvallis</td>
<td>O8z4,z23:</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Albany</td>
<td>O8z4,z24:</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>S. Manhattan</td>
<td>O8(O6)d:1,5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Newport</td>
<td>O8(O6)e,h:1,2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td>O9g,m:</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Miyazaki</td>
<td>O9l,x13:1,7</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Cerro</td>
<td>O18z4,z23:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>血清型不明</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

合計 | 78 | 44 | 28 | 6 |

ウ カンピロバクター

感染症発生動向調査及び食品に関連する検体について検査したところ、感染症発生動向調査ではC. jejuniが1件検出された。食品に関しては、鶏タタキ・鶏刺身など5件の食品からカンピロバクターが検出され、そのうち2件の食品からはC. jejuniが、3件の食品からはC. jejuniとC. coliが検出された（表15）。

表15 2016年度 カンピロバクター分離状況

<table>
<thead>
<tr>
<th>菌名</th>
<th>分離総数</th>
<th>感染症発生動向調査(患者)</th>
<th>食中毒有症苦情等(患者)</th>
<th>食品(収去・調査)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter jejuni</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>5 (鶏タタキ・鶏刺身)</td>
</tr>
<tr>
<td>Campylobacter coli</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3 (鶏タタキ・鶏刺身)</td>
</tr>
</tbody>
</table>

分離株数合計 | 9 | 1 | 0 | 8 |
(2) 呼吸器系病原細菌

ア Legionella属菌
レジオネラ症疑いの散発事例2例において、レジオネラ属菌（Legionella pneumophila 血清群1、Legionella pneumophila 血清群3）が分離・同定された。

イ Bordetella属菌
百日咳症疑いの散発事例127例において、Real-time PCR法及びLAMP法による遺伝子検査で百日咳菌（Bordetella pertussis）が26件、バラ百日咳菌（Bordetella parapertussis）が2件検出され、このうち18件から百日咳菌が分離された（表16）。

表16 2016年度 百日咳様症状を呈した患者からの百日咳菌の検出状況

<table>
<thead>
<tr>
<th>検出菌名</th>
<th>Real-time PCR法</th>
<th>LAMP法（B. pertussis特異的）</th>
<th>分離</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bordetella pertussis</td>
<td>26（IS481検出）</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Bordetella parapertussis</td>
<td>2（IS1001検出）</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
食品・環境・水質検診

1 細菌性食中毒検査

2016年度に県内（他県関連を含む）で発生した9事件の食中毒（疑い）等に関する122検体について細菌検査を実施した。うち1事件については粘液胞子虫（Kudoa septempunctata）について検査を行った。いずれの事件からも有意な病原体は検出されなかった。

2 食品関連検査

食品関連検査の概要は次のとおりである（表17）。

(1) 定期収去検査等
定期収去検査として、牛乳12検体、そうざい33検体、清涼飲料水5検体、食肉製品15検体、生菓子7検体、冷凍食品14検体、魚肉練り製品12検体、鶏刺し・タタキ8検体及びハチミツ6検体の計112検体について、309項目の検査を実施した。
その結果、そうざい等で生菌数の基準超過が1検体あった。また、鶏刺し・タタキ1検体からSalmonella Haifaを、2検体から黄色ブドウ球菌を検出し、3検体からCampylobacter jejuniとC.coliを同時に検出した。

(2) 食中毒菌汚染実態調査
厚生労働省通知「平成28年度食品の食中毒菌汚染実態調査実施要領」に基づき、野菜類80検体、肉類25検体の計105検体について、333項目の検査を実施した。
その結果、野菜類からは、きゅうり、みずなのが1検体、浅漬2検体及びもやし4検体の計8検体から大腸菌を検出した。また、カット野菜1検体では生菌数の基準超過があった。
肉類では、鶏たたき・鶏刺身4検体から大腸菌を、3検体からS.Corvallisを、1検体からS.BraenderupとS.Cerroを同時に検出し、2検体からC.jejuniを検出した。また、鶏ミンチ肉1検体からS.Manhattanを、結着処理加工牛肉1検体からS.Schwarzengrundを検出した。
腸管出血性大腸菌O26、O103、O111、O121、O145及びO157については、全ての検体から検出されなかった。

(3) 精度管理
G L P（食品衛生検査施設の業務管理要領）に基づき食品検査を行い、内部精度管理として細菌同定検査（サルモネラ属菌）、外部精度管理として細菌同定検査（腸内細菌科菌群、一般細菌数、黄色ブドウ球菌、サルモネラ属菌）を実施した。
表 17 2016年度 食品関連検査の概要

<table>
<thead>
<tr>
<th>食品名</th>
<th>検体数合計</th>
<th>項目数合計</th>
<th>生菌数</th>
<th>大腸菌群</th>
<th>大腸菌</th>
<th>サルモネラ属菌</th>
<th>腸管出血性大腸菌</th>
<th>黄色ブドウ球菌</th>
<th>タンポポラクター（定性）</th>
<th>タンポポラクター（生菌数）</th>
</tr>
</thead>
<tbody>
<tr>
<td>定期収去検査等</td>
<td></td>
</tr>
<tr>
<td>牛乳</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>33</td>
<td>33</td>
<td>33 (1)※</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>そばざい</td>
<td>33</td>
<td>132</td>
<td>33 (1)※</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>清涼飲料水</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>食肉製品</td>
<td>15</td>
<td>45</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生菜子</td>
<td>7</td>
<td>28</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷凍食品</td>
<td>14</td>
<td>28</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>魚肉丸製品</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鶏刺し・たたき</td>
<td>8</td>
<td>24</td>
<td>8 (1)</td>
<td>8</td>
<td>8 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハチミツ</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

小計 112 309 71 (1)※ 50 48 63 (1) 63 (2) 8 (3) 6

食中毒菌汚染実態調査

| 野菜類 | | | | | | | | | | | |
|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| カイワレ | 9 | 27 | 9 | 9 | 9 |
| レタス | 9 | 27 | 9 | 9 | 9 |
| きゅうり | 10 | 30 | 10 (1) | 10 | 10 |
| もやし | 9 | 27 | 9 (4) | 9 | 9 |
| みずな | 8 | 24 | 8 (1) | 8 | 8 |
| トマト | 10 | 30 | 10 | 10 | 10 |
| はぐき | 2 | 6 | 2 | 2 | 2 |
| なす | 6 | 18 | 6 | 6 | 6 |
| カット野菜 | 7 | 28 | 7 (1)※ | 7 | 7 | 7 |
| 深漬 | 10 | 30 | 10 (2) | 10 | 10 |

肉類

騎刺し等	3	12	3	3	3	3	
鶏たたき・鶏料理	8	32	8 (4)	8 (5)	8	8 (2)	
ミンチ肉(鶏,豚,牛)	7	21	7	7 (1)	7	7 (1)	7
結着処理加工牛肉等	7	21	7	7	7 (1)	7	

小計 105 333 7 (1)※ 105 (12) 105 (7) 105 11 (2)

合計

| | |合計 | | | | | | | | |
|合計 | | 217 | 642 | 78 (2)※ | 50 | 153 (12) | 168 (8) | 105 | 63 (2) | 19 (5) |

※ = 基準超過検体数 () = 阳性検体数
3 事業場排水及び水浴場の水質検査
事業場排水及び水浴場について大腸菌関連検査を実施した（表18）。
(1) 事業場排水
「水質汚濁防止法及びみやざき県民の住みよい環境の保全等に関する条例」に基づき、153事業場の367検体について大腸菌群数の検査を行ったところ、17事業場の18検体が排水基準に適合していなかった。
(2) 水浴場
環境省水・大気環境局水環境課長通知「平成28年度水浴に供される公共用水域の水質等の調査について」に基づき、県内11ヶ所の海水浴場について、開設前（連続する2日間の午前と午後の計4回）及び開設中（開設前と同様に計4回）に、ふん便性大腸菌群数144件及び腸管出血性大腸菌（O157等）25件の水質検査を行い、4箇所の環境測点については大腸菌群数（MPN法）15件の水質検査を追加実施した。

4 飲用水検査
県の「飲用井戸等汚染状況実態調査」に基づき飲用井戸水20検体について、一般細菌数及び大腸菌の検査を実施した（表19）。また、1保健所より緊急行政依頼があった2ヶ所の高病原性鳥インフルエンザ埋却地周辺井戸水と池の水や河川水の一般細菌数及び大腸菌の検査を計47件実施した。

5 口蹄疫関連検査
口蹄疫に係る埋却地周辺の水質調査について、4年目となった2016年度からは年4回のモニタリング試験を実施した。
埋却地周辺の湧水11検体及び埋却地周辺井戸水7検体、合計18検体について一般細菌数及び大腸菌の検査を行った。

6 その他の水質関連検査
2保健所からの行政依頼検査14検体について、大腸菌群数（MPN法）検査等を実施した。

表18 2016年度 事業場排水及び水浴場の水質検査件数

<table>
<thead>
<tr>
<th>検査項目</th>
<th>中央保健所</th>
<th>日南保健所</th>
<th>矢部保健所</th>
<th>高鍋保健所</th>
<th>都城保健所</th>
<th>小林保健所</th>
<th>日向保健所</th>
<th>延岡保健所</th>
<th>高千穂保健所</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>排水</td>
<td>17</td>
<td>37</td>
<td>51</td>
<td>114</td>
<td>56</td>
<td>47</td>
<td>34</td>
<td>11</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>ふん便性大腸菌群数</td>
<td>46</td>
<td>16</td>
<td></td>
<td>36</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>腸管出血性大腸菌 O157等</td>
<td>11</td>
<td>2</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>大腸菌群数（MPN）</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>17</td>
<td>103</td>
<td>69</td>
<td>114</td>
<td>56</td>
<td>95</td>
<td>86</td>
<td>11</td>
<td>551</td>
<td></td>
</tr>
</tbody>
</table>

-17-
表19 2016年度 飲用井戸等汚染状況実態調査（一般細菌数及び大腸菌）検査件数

<table>
<thead>
<tr>
<th>検査項目</th>
<th>中央保健所</th>
<th>高鍋保健所</th>
<th>都城保健所</th>
<th>小林保健所</th>
<th>日向保健所</th>
<th>高千穂保健所</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>飲用井戸水</td>
<td>一般細菌数</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>大腸菌</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>合計</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

7 特定感染症検査
「特定感染症対策事業対策実施要領」に基づき、県内各保健所のHIV即日検査を311件行った（表20）。3件が偽陽性となり、確認検査の結果HIV-1と確認された。

表20 2016年度 保健所別HIV即日検査件数

<table>
<thead>
<tr>
<th>検体数</th>
<th>中央</th>
<th>日南</th>
<th>都城</th>
<th>小林</th>
<th>高鍋</th>
<th>日向</th>
<th>延岡</th>
<th>高千穂</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV抗体</td>
<td>88</td>
<td>13</td>
<td>74</td>
<td>13</td>
<td>14</td>
<td>86</td>
<td>2</td>
<td>311</td>
<td></td>
</tr>
</tbody>
</table>

検査方法：HIV抗体：イムノクロマトグラフィー法（ダイナスクリーン・HIV-1/2,アリーア・メディカル株式会社）

8 医療機器無菌試験
厚生労働省通知による「平成28年度医療機器一斉監視指導」に基づき、収去されたソフトコンタクトレンズ6検体について、2検体ずつ好気性細菌試験、嫌気性細菌試験及び真菌試験の3つの試験を実施したところ、全て規格基準に適合していた。

9 結核菌分子疫学的検査
2012(平成24)年10月に「宮崎県結核菌検査実施要領」が施行され、結核の発生予防、発生動向及び原因の調査のため、分子疫学的手法(VNTR法)を用いた感染源・感染経路の究明が可能となった。

検査は、結核菌VNTRハンドブック第1版（2012年10月編）に準じ、地研協議会保健情報疫学部会マニュアルに基づいて実施している。

2016年度は、宮崎市保健所を含む県内の保健所から81件の検査依頼があった。検査の結果、同一VNTRパターン(18領域)を示す事例は11事例あり、うち3事例は同一施設関係者及び家族内での感染であり、同一菌株由来による感染の可能性が高いと推測された。また、同一人物によるVNTRパターン一致が3例あり、感染の再燃が推測された。残りの5事例については、疫学的な関連は低く、同一菌株由来による感染の可能性は低いと推測された。

10 土呂久地区住民健康観察検診（大検診）
2013(平成25)年度に延岡保健所広域指導検査課検査係が統合されたことにより2014年5月から、高千穂保健所で3回の土呂久地区住民健康観察検診業務に従事している。2016年度は、5月(開設1日)に臨床検査として尿検査、沈渣、肺機能検査を行い、外注検査項目である尿細胞診及び生化学検査の検体前処理を行った。6月(開設2日)は5月と同様の検査を行い、7月(開設2日)は内科検診として心電図検査を実施した（表21）。
<table>
<thead>
<tr>
<th>検査項目</th>
<th>5月</th>
<th>6月</th>
<th>7月</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>尿定性</td>
<td>62</td>
<td>17</td>
<td>28</td>
<td>107</td>
</tr>
<tr>
<td>尿沈渣</td>
<td>36</td>
<td>14</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>肺機能検査</td>
<td>62</td>
<td>0</td>
<td>9</td>
<td>71</td>
</tr>
<tr>
<td>心電図</td>
<td>46</td>
<td>28</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>計</td>
<td>160</td>
<td>31</td>
<td>46</td>
<td>265</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>尿細胞診検体処理</th>
<th>44×2</th>
<th>36×2</th>
<th>24×2</th>
<th>208</th>
</tr>
</thead>
<tbody>
<tr>
<td>血清分離</td>
<td>58</td>
<td>0</td>
<td>9</td>
<td>67</td>
</tr>
</tbody>
</table>
衛生化学部

衛生化学部は、食品中に含まれる残留農薬や残留動物用医薬品等の化学物質の検査、食品添加物の検査、環境中の放射能測定、医薬品や家庭用品等の理化学的試験、温泉試験等を行うとともに、保健所及び食肉衛生検査所職員に対する分析技術研修指導、検査結果の信頼性確保のための精度管理に加え、調査研究を行っている。

2016年度（平成28年）度の業務概要は、次のとおりである。

1 食品の収去検査
本検査は、衛生管理課の年間計画に基づき、県保健所が収去した食品を検査するもので、その概要は、次のとおりである。

(1) 残留農薬検査
県内で収去された農産食品及び畜水産食品25品目計81検体について残留農薬（有機塩素系農薬、有機リン系農薬、カルバメート系農薬等）延べ18,699項目の検査を行ったところ、いずれの検体からも残留基準値を超える農薬は検出されなかった（表1-1）。

(2) 残留動物用医薬品検査
県内で収去された畜水産食品13品目計85検体について残留動物用医薬品（抗生物質、合成抗菌剤及びその他の動物用医薬品）延べ5,287項目の検査を行ったところ、いずれの検体からも残留基準値を超える動物用医薬品は検出されなかった（表1-1）。

(3) 食品添加物検査
県内で収去された加工食品7品目計51検体について、食品添加物（甘味料、着色料、保存料、発色剤、酸化防止剤）延べ545項目の検査を行ったところ、使用基準を超えるものはないかった（表1-2）。

輸入果実4品目計10検体について、防カビ剤（チアベンダゾール、ジフェニルオルトフェニルフェノール、イマガリリ）延べ32項目の検査を行ったところ、使用基準を超えるものはないかった。

(4) 牛乳規格試験
県内で製造され、収去された牛乳11検体について、無脂乳固形分等延べ43項目の検査を行ったところ、すべて基準を満たしていった。

(5) 清涼飲料水成分規格試験
県内で製造され、収去された清涼飲料水5検体について、ヒ素、鉛、カドミウムの検査を実施したところ、すべて基準を満たしていた。

(6) 安全・安心確保食品アレルギー対策事業に基づく検査
この検査は、県内を流通する加工食品におけるアレルギー特定物質の含有状況を検査し、食の安全に寄与するものである。

2016年度は、食肉製品、そうざい、菓子乳製品計21検体について、乳、卵、小麦の検査を行った。乳の表示がある食肉製品1検体でスクリーニング検査の結果が陰性となった。その他についてはすべて表示どおりであった。

2 精度管理
当研究所では、検査結果の信頼性を確保するため、GLP（食品衛生検査施設の業務管理）に従って食品検査を行っており、分析技術の進歩や分析項目の増加等に伴って、逐次SOP（標準作業書）の改定や追加を行い、適切な分析手法による検査に努めている。
また、検査のつど添加回収及び陰性対照試験を実施するとともに、内部精度管理として、残留動物用医薬品検査（スルファジミジンの定量）、さらに、外部精度管理として、食品添加物検査（安息香酸の定量）、残留農薬検査（一斉分析）及び残留動物用医薬品検査（スルファジミジンの定量）に参加した。

3 食品中に残留する農薬等の摂取量調査（厚生労働省委託）
県民が日常の食事を介してどの程度の量の農薬等を摂取しているかを把握し、食品の安全性を確認することを目的として実施した。
マーケットバスケット方式により試料を調製し、I～IV群の食品群について、LC/MS/MSによる農薬（チアクロブリド、チアネトキサム、ポスカリド、シアソファミド、シプロジニル、フルフェノクスロン、イマガリリ、ピラクロストロビン）の分析法検討及び
び検査を行った。

4. 苦情食品等の検査

2件の苦情食品等の検査依頼が保健所からあり、原因究明のための検査を行った（表2）。

表1-1 2016年度食品収去検査（残留農薬・残留動物用医薬品）の概要

<table>
<thead>
<tr>
<th>検査対象</th>
<th>検体数</th>
<th>検査項目数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>農薬</td>
</tr>
<tr>
<td>牛肉</td>
<td>2</td>
<td>204</td>
</tr>
<tr>
<td>鶏肉</td>
<td>9</td>
<td>936</td>
</tr>
<tr>
<td>豚肉</td>
<td>3</td>
<td>306</td>
</tr>
<tr>
<td>アールスメロン</td>
<td>2</td>
<td>576</td>
</tr>
<tr>
<td>いちご</td>
<td>2</td>
<td>596</td>
</tr>
<tr>
<td>えんどう豆</td>
<td>1</td>
<td>246</td>
</tr>
<tr>
<td>かぼちゃ</td>
<td>2</td>
<td>472</td>
</tr>
<tr>
<td>かんしょ</td>
<td>5</td>
<td>1,473</td>
</tr>
<tr>
<td>キャベツ</td>
<td>2</td>
<td>580</td>
</tr>
<tr>
<td>きゅうり</td>
<td>11</td>
<td>2,231</td>
</tr>
<tr>
<td>きんなかん</td>
<td>2</td>
<td>596</td>
</tr>
<tr>
<td>スイートコーン</td>
<td>2</td>
<td>542</td>
</tr>
<tr>
<td>そら豆</td>
<td>1</td>
<td>246</td>
</tr>
<tr>
<td>たまねぎ</td>
<td>2</td>
<td>578</td>
</tr>
<tr>
<td>トマト</td>
<td>10</td>
<td>2,319</td>
</tr>
<tr>
<td>梨</td>
<td>4</td>
<td>1,160</td>
</tr>
<tr>
<td>なす</td>
<td>1</td>
<td>238</td>
</tr>
<tr>
<td>ニャ</td>
<td>2</td>
<td>594</td>
</tr>
<tr>
<td>白菜</td>
<td>2</td>
<td>596</td>
</tr>
<tr>
<td>ピーマン</td>
<td>4</td>
<td>800</td>
</tr>
<tr>
<td>ぶどう</td>
<td>2</td>
<td>580</td>
</tr>
<tr>
<td>へべす</td>
<td>2</td>
<td>586</td>
</tr>
<tr>
<td>ぽんかん</td>
<td>2</td>
<td>596</td>
</tr>
<tr>
<td>みかん</td>
<td>4</td>
<td>1,172</td>
</tr>
<tr>
<td>ミニトマト</td>
<td>2</td>
<td>476</td>
</tr>
<tr>
<td>合計</td>
<td>81</td>
<td>18,699</td>
</tr>
</tbody>
</table>

畜

| | | 農薬 | 動物用医薬品等 |
|----------|--------|------------|
| 鶏肉 | 22 | 1,339 |
| 鶏レバー | 12 | 780 |
| 鶏卵 | 16 | 978 |
| はちみつ | 6 | 396 |
| 牛乳 | 3 | 183 |
| ニジマス | 6 | 372 |
| こい | 1 | 67 |
| あゆ | 9 | 540 |
| ヒラメ | 2 | 134 |
| カンパチ | 2 | 122 |
| タイ | 2 | 126 |
| ヤマメ | 2 | 128 |
| ブリ | 2 | 122 |
| 合計 | 85 | 5,287 |

産

| | | 農薬 | 動物用医薬品等 |
|----------|--------|------------|
| 鶏肉 | 22 | 1,339 |
| 鶏レバー | 12 | 780 |
| 鶏卵 | 16 | 978 |
| はちみつ | 6 | 396 |
| 牛乳 | 3 | 183 |
| ニジマス | 6 | 372 |
| こい | 1 | 67 |
| あゆ | 9 | 540 |
| ヒラメ | 2 | 134 |
| カンパチ | 2 | 122 |
| タイ | 2 | 126 |
| ヤマメ | 2 | 128 |
| ブリ | 2 | 122 |
| 合計 | 85 | 5,287 |

*：厚生労働省通知による畜水産食品の残留有害物質モニタリング検査を兼ねて実施したもの
表1-2 2016年度 食品収去検査（加工食品の食品添加物）の概要

<table>
<thead>
<tr>
<th>検査対象</th>
<th>検体数</th>
<th>検査項目数</th>
<th>甘味料</th>
<th>着色料</th>
<th>保存料</th>
<th>発色剤</th>
<th>酸化防止剤</th>
</tr>
</thead>
<tbody>
<tr>
<td>漬物</td>
<td>10</td>
<td>10</td>
<td>120</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>魚肉練り製品</td>
<td>12</td>
<td>12</td>
<td>72</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>食肉製品</td>
<td>15</td>
<td>15</td>
<td>105</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>醤油</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>みそ</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>野菜</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ワイン</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>計</td>
<td>51</td>
<td>41</td>
<td>192</td>
<td>287</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

表2 2016年度 苦情食品等の検査

<table>
<thead>
<tr>
<th>No.</th>
<th>検査期間</th>
<th>検体名</th>
<th>検体数</th>
<th>検査項目</th>
<th>分析装置</th>
<th>分析結果</th>
<th>被害苦情の状況</th>
<th>保健所</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8月9日~8月12日</td>
<td>鶏肉</td>
<td>1</td>
<td>動物用医薬品</td>
<td>LC/MS/MS</td>
<td>定量限界未満</td>
<td>異臭</td>
<td>都城</td>
</tr>
<tr>
<td>2</td>
<td>8月24日</td>
<td>クワズイモ</td>
<td>1</td>
<td>シュウ酸カルシウム</td>
<td>光学顕微鏡</td>
<td>針状結晶を確認</td>
<td>口腔内しびれ</td>
<td>高鍋</td>
</tr>
</tbody>
</table>

5 環境放射能水準調査（原子力規制委員会原子力規制庁委託）

本県における平常時の環境放射能レベルを把握するため、1988(昭和63)年度より調査を実施している。2016年度もこれまでと同様、降水について全β放射能測定、大気浮遊じん、降下物、蛇口水、土壌、精米、野菜及び牛乳についてγ線核種分析を行うとともに、モニタリングポストにより空間放射線量率測定を行った。

なお、2011(平成23)年3月11日に発生した東日本大震災による福島第一原子力発電所事故後のモニタリング強化項目の測定について、前年度に引き続き実施した。

また、2016(平成28)年9月9日に北朝鮮による核実験が行われたことにより、モニタリング強化項目（大気浮遊じん及び降下物）の測定を9月16日まで実施したところ、異常値は検出されなかった。

6 放射能分析比較試料による精度管理

環境放射能測定の信頼性を確保するため、環境放射能水準調査を実施する都道府県の分析機関と公益財団法人日本分析センターが実施する精度管理事業に参加した。

この事業は、日本分析センターが調製した3種類の分析比較試料（寒天、模擬土壌、模擬牛乳）のγ線核種分析を各分析機関で実施する「標準試料法」と呼ばれる方法で相互比較分析（いわゆるクロスチェック）を行うものである。

2016年度の測定結果については、分析を行ったすべての種類及び核種で検討基準の範囲内であり、核種同定や解析方法が適正であると判断された。

7 医薬品試験

ダイエット用食品等健康被害防止事業に基づき、瘦身用健康食品及び強壯用健康食品の6
検体について医薬品成分等26項目を分析したところ、全検体とも医薬品成分等は検出されなかった。
8 医療機器試験
厚生労働省通知による医療機器一斉監視指導の一環として、視力補正用コンタクトレンズ7検体について試験を実施したところ、全検体とも異常は認められなかった。
9 家庭用品の検査
「有害物質を含有する家庭用品の規制に関する法律」に基づき、繊維製品や住宅用洗浄剤等についてホルムアルデヒド等の検査を行ったところ、全検体とも基準値以下であった（表3）。
10温泉試験
(1) 療養適否試験
療養適否試験は、温泉であるか否か及び療養泉であるか否かの試験である。
2016年度は試験依頼がなかった。
(2)温泉定量試験
当研究所は、依頼により温泉法に基づく温泉成分分析を行い、泉質名と効能効果等を併記した温泉分析書を発行している。
2016年度に試験依頼のあった2件は療養泉に該当した。湧出地と分析した結果から判定した泉質名を表4に示す。

<table>
<thead>
<tr>
<th>品目</th>
<th>検査項目</th>
<th>検体数</th>
</tr>
</thead>
<tbody>
<tr>
<td>繊維製品</td>
<td>ホルムアルデヒド（出生後24月以内の乳幼児用のもの）</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>ホルムアルデヒド（出生後24月以内の乳幼児用のものを除いたもの）</td>
<td>26</td>
</tr>
<tr>
<td>住宅用洗浄剤</td>
<td>塩化水素又は硫酸</td>
<td>5</td>
</tr>
<tr>
<td>家庭用洗浄剤</td>
<td>水酸化カリウム又は水酸化ナトリウム</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>湯出地</th>
<th>泉温（℃）</th>
<th>泉質名</th>
</tr>
</thead>
<tbody>
<tr>
<td>串間市</td>
<td>23.7</td>
<td>含よう素-ナトリウム-塩化物・炭酸水素塩冷鉱泉</td>
</tr>
<tr>
<td>西米良村</td>
<td>33.2</td>
<td>ナトリウム-炭酸水素塩温泉</td>
</tr>
</tbody>
</table>
環境科学部
環境科学部は、大気・水質等の行政依頼調査、調査研究を主な業務としている。
大気関係では、テレメータシステムによる大気汚染常時監視、工場・事業場のばい煙発生及び揮発性有機化合物排出施設から排出されるはいじんや揮発性有機化合物等の排出量測定、さらにには酸性雨のモニタリング調査等を行っている。
水質関係では、公共用水域、地下水、飲用井戸水等の水質測定や工場・事業場の排出水の測定、死魚事故等の水質汚濁事故の原因調査、県内主要河川における水生生物調査等を行っている。
2016(平成28)年度の業務の概要は、次のとおりである。

1 大気汚染常時監視
大気汚染防止法の規定により、県内の大気環境の状況を把握するため、県内の一般環境大気測定局、自動車排出ガス測定局等で大気汚染物質の測定を行っている。測定データは、各測定局から当研究所に送信される宮崎県大気汚染中央監視局へテレメータシステムにより送信され、24時間体制で集中監視している。また、大気汚染物質の情報については、Webページ「みやざきの空」(宮崎県)及び「そらまめ君」(環境省)により、リアルタイムで県民に提供している。
2016(平成28)年度における環境基準が定められている項目の県内の大気汚染常時監視結果は、表1のとおりであった。

2 酸性雨モニタリング調査
1991(平成3)年度から当研究所屋上でにおいて降雨を採取し、pH、EC及び硝酸イオン、硫酸イオン等のイオン成分のモニタリング調査を実施している。さらに、2000(平成12)年度からは環境省委託事業として、えび市の屋上に設置されている国設酸性雨測定所においてモニタリング調査を実施している。
当研究所屋上で採取した降雨の2016(平成28)年度の年平均pH値は5.04で、月平均pH値の経月変化は最小値が4.69(3月)、最大値が5.41(7月)であった(図1)。2012(平成24)年度以降の年平均pH値の経年変化を図2に示す。また、雨の酸性化に関係する硫酸イオンと硝酸イオンの2016(平成28)年度の年平均値は、それぞれ10.3μmol/Lと9.6μmol/Lであった。2012(平成24)年度以降の年平均値の経年変化を図3及び図4に示す。

3 大気立入検査測定
大気汚染防止法の規定により、ばい煙発生施設及び揮発性有機化合物排出施設を設置している工場・事業場6か所の排出ガスについて立入検査を行った。
測定の結果、法令に定める排出基準を超過している施設はなかった。

4 化学物質環境実態調査（環境省委託調査）
残留性有機汚染物質に関するストックホルム条約(POPS条約)対象物質及び化学物質の審査及び製造等の規制に関する法律における第1種、第2種特定化学物質等の環境汚染実態を経年的に把握するために、試料の採取等を行った。
大気については、1)初期調査として、ヘキサメチレンジアミンを対象とし、新延岡自動排気試験場で試料を年1回採取した。2)モニタリング調査として、PCB類、ヘキサクロロペンゼン、クロルベンゼン、ヘプタクロル類、ヘキサクロルエチル類、ペルフルオロオクタンスルホン酸、ペルフルオロオクタン酸、ベンタクロロペンゼン、エンドスルファン、1,2,5,6,9,10-ヘキサプロモジクロロペンゼン、ポリ塩化ナフタレン類、ベンタクロロフェノールとその塩及びエステル類、ヘキサクロロブタ・3,4-ジエン、短鎖塩素化パラフィン(炭素数が10〜13のもの)及びジクロルの16物質群を対象とし、当研究所屋上で試料を年1回採取した。
水質については、1)初期調査として、ヘキサメチレンジアミンを対象とし、中橋(延岡市)で試料を年1回採取した。2)モニタリング調査として、PCB類、ヘキサクロロペンゼン、クロルベンゼン、ヘプタクロル類、ヘキサクロルエチル類、ヘキサクロルペンゼン、クロルベンゼン、ベンタクロロペンゼン、エンドスルファン、1,2,5,6,9,10-ヘキサプロモジクロロペンゼン、ポリ塩化ナフタレン類、ベンタクロロペンゼン、エンドスルファン、1,2,5,6,9,10-ヘキサプロモジクロロペンゼン。
表 1 2016 (平成 28) 年度 大気汚染常時監視結果

<table>
<thead>
<tr>
<th>市・町</th>
<th>調定局名</th>
<th>二酸化硫黄</th>
<th>一酸化炭素</th>
<th>二酸化炭素</th>
<th>水酸化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>年平均値 (ppm)</td>
<td>日間経時平均値 (ppm)</td>
<td>24時間平均値 (ppm)</td>
<td>日間経時平均値 (ppm)</td>
<td>年平均値 (ppm)</td>
</tr>
<tr>
<td></td>
<td>9.6 12.3 23.8</td>
<td>4.6 5.0 5.2 5.4 5.6</td>
<td>4.7 4.9 5.1 5.3 5.5</td>
<td>4.8 4.9 5.1 5.3 5.5</td>
<td>4.9 5.0 5.2 5.4 5.6</td>
</tr>
</tbody>
</table>

※「一」は、環境基準評価のための有効測定時間が4000時間未満、または、有効測定日数が250日未満であったため、集計していないことを示す。

![図 1 2016 (平成 28) 年度 降水の平均 pH 値の経月変化](image1.png)

![図 2 降水の年平均 pH 値の経月変化](image2.png)

![図 3 硫酸イオンの経年変化](image3.png)

![図 4 硝酸イオンの経年変化](image4.png)
水道水質検査の技術水準の把握と技術の向上を図るため、厚生労働省が実施している当該精度管理調査に参加した。六価クロム、銅について測定を行い、いずれも良好な精度を示した。

6 公用水域の水質測定
水質汚濁防止法の規定により県が策定した「平成28年度公共用水域の水質測定計画」に基づき、河川水及び海水の測定を行った。

河川水については、3河川各1地点で表2に示す要監視項目を年2回、延べ78項目の水質測定を行った。また、4河川14地点で全面積及びノニルフェノール（NP）を年4回、延べ112項目の水質測定を行った。

海水については、11海水浴場でCOD、pH、DO及び油分のうち2〜4項目を開設前と開設中の年2回、各々延べ100項目の水質測定を行った。開設前の水質はいずれも「AA」又は「A」であった。

7 地下水調査
県内の地下水について、トリクロロエチレン等の揮発性有機化合物による污染状況を把握するために、95本の地下水114検体について、年1〜4回、延べ1,226項目の水質測定を行った。また、都城盆地硝酸性窒素削減対策に係る検査として、都城地区の100本の地下水297検体について、年2〜12回、硝酸性窒素、亜硝酸性窒素等延べ3,564項目の水質測定を行った。

8 飲用井戸等汚染状況実態調査
水道法等の規制を受けない飲用井戸等の汚染実態を把握するため、20本の井戸について、As、
トリクロロエチレン等延べ560項目の水質測定を行った。

9 事業場排水の水質測定
水質汚濁防止法等の規制対象の工場及び事業場137か所の排出水について、表3の水質測定項目のうち、工場及び事業場ごとに規制を受ける延べ2,202項目の水質測定を行った。なお、基準を超過した事業場に対しては、管轄保健所から改善指導を行った。

表3 事業場排水の水質測定項目

<table>
<thead>
<tr>
<th>有害物質</th>
<th>pH、BOD、COD、SS、T-N、T-P、油分、Zn、T-Cr、Cu、フェノール、Mn、Fe（13項目）</th>
</tr>
</thead>
<tbody>
<tr>
<td>トリクロロエチレン等延べ560項目の水質測定を行った。</td>
<td></td>
</tr>
</tbody>
</table>

10水質汚濁事故に伴う測定調査
住民等から保健所に通報のあった河川等の水質汚濁事故について、原因を究明するための調査を実施した。死魚事故7件、その他の水質汚濁事故8件について、pH、EC等延べ645項目の測定調査を行った。その概要を表4に示す。

11 水道水質検査精度管理
水道水質検査は、水質基準に関する省令の改正が行われるたびに検査項目が著しく増加するとともに、極めて微量レベルの測定が必要になっている。このため、県内で水道水質検査を実施している測定機関の検査技術の向上を図る目的で、水道水質検査精度管理を実施した。
2016(平成28)年度は、ヒ素及びその化合物及び有機物（全有機炭素（TOC）の量）の2項目について、共通試料を当研究所で調製し、参加5機関（宮崎市上下水道局、一般財団法人宮崎県公衆衛生センター、株式会社東洋環境分析センター、公益財団法人宮崎県環境科学協会及び当研究所）で精度管理を実施した。ヒ素及びその化合物については2機関がやや低値であったが、有機物（全有機炭素（TOC）の量）については、全機関が良好な精度を示した。

12 一般依頼検査
水道原水等15検体についてクロロピクリンの測定を実施した。

13 家庭でできる生活排水実践活動における水質調査
大淀川流域住民の河川浄化意識向上のため実施された「家庭でできる生活排水実践活動」において、環境管理課、都城保健所、都城市及び三股町と連携して、モデル地区2か所における生活排水対策実践活動前後の水質調査を実施した。各モデル地区の都市下水路等2地点4検体について、BOD、T-N、T-P等延べ40項目の水質測定を行った。

14 口蹄疫に係る埋却地周辺の環境調査
2010(平成22)年4月、本県で発生した口蹄疫で殺処分された家畜の埋却地に係る環境調査を実施した。
2016(平成28)年度は四半期ごとに埋却地の影響を受けたと疑われる井戸水や湧水等17検体について、pH、EC等延べ416項目の測定を行った。

15 鳥インフルエンザに係る埋却地周辺の環境調査
2016(平成28)年12月及び2017(平成29)年1月、本県で発生した高病原性鳥インフルエンザに伴う死鳥の埋却地に係る環境調査を実施した。調査当初は数地点で毎週調査を実施したが、数値の推移をみながら月1回の調査に変更し、井戸水や河川水等40検体について、TOC、pH等延べ594項目の測定を行った。
16 その他

(1) 住民の苦情等による事業場排水等の検査依頼が18件あり、106検体について、pH、BOD等延べ1,414項目の測定を行った。

(2) 県が業務委託している民間測定機関の精度管理の一環として、河川水中のAsについて、12件のクロスチェック測定を行った。

(3) 県内主要河川における水生生物に関する水辺環境学習の充実に向けた調査を実施した。川内川河系の3か所で底生動物と河川水を採取し、底生動物の形態学的な同定を行うとともに、DO、BOD等延べ42項目の理化学測定を行った。

表 4 2016(平成28)年度 水質汚濁事故に伴う測定調査の概要

<table>
<thead>
<tr>
<th>分類</th>
<th>発生年月日</th>
<th>検体搬入年月日</th>
<th>発生地</th>
<th>事故の概要等</th>
<th>分析件数</th>
<th>分析項目数</th>
<th>延べ分析項目数</th>
<th>検体名</th>
<th>分析結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H28.3.23</td>
<td>H28.3.31</td>
<td>日之影町</td>
<td>河川の岩石に白色的物質が付着</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>河岸石</td>
<td>顕微鏡観察の結果、珪藻類が確認された。また、付着物質を強熱した際の残留物の顕微鏡観察の結果、珪藻類の殻が確認された。</td>
</tr>
<tr>
<td>2</td>
<td>H28.3.28</td>
<td>H28.3.28</td>
<td>都農町</td>
<td>城川のせき止められた池にて死魚発生</td>
<td>2</td>
<td>32</td>
<td>32</td>
<td>河川水死魚</td>
<td>pH及びDOは、環境基準に適合しており、TOCは水道法に基づく水質基準に適合していた。魚毒性農薬の殺菌剤クロロロニル（TPN）が検出され、また、死魚の外観観察では、有機塩素系農薬の特徴に挙げられる体表や鰓の粘液分泌や鰓の暗赤色化が確認された。</td>
</tr>
<tr>
<td>3</td>
<td>H28.4.14</td>
<td>H28.4.14</td>
<td>都農町</td>
<td>城川のせき止められた池にて死魚発生</td>
<td>4</td>
<td>31</td>
<td>92</td>
<td>河川水死魚</td>
<td>pH及びDOは、環境基準に適合し、TOCは水道法に基づく水質基準に適合していた。魚毒性農薬の殺菌剤クロロロニル（TPN）が検出され、また、死魚の外観観察では、体表の色の退色、腹ヒレから肛門周辺にかけて赤斑、鰓の白色化が確認された。</td>
</tr>
<tr>
<td>4</td>
<td>水質汚濁</td>
<td>H28.7.22</td>
<td>H28.7.22</td>
<td>都城市</td>
<td>平田橋南側の思案橋橋詰か ら洗剤の泡様のものが発生</td>
<td>2 16 30</td>
<td>河川水</td>
<td>硝酸性窒素及び亜硝酸性窒素、 pH及びSSは環境基準に適合し ていたが、BODは河川の環境基準を超過していた。泡の部分からは陰イオン界面活性剤が検出された。</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>死魚事故</td>
<td>H28.8.4</td>
<td>H28.8.4</td>
<td>日向市</td>
<td>庄手川に流入する都市下水路合流点付近で多量の発泡及び死魚が発生</td>
<td>3 32 63</td>
<td>河川水死魚</td>
<td>pHは環境基準に適合しており、残留塩素及び魚毒性農薬（27種）は検出されなかった。陰イオン界面活性剤が検出されたが、濃度が低く、原因は特定できなかった。</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>水質汚濁</td>
<td>H28.8.10</td>
<td>H28.8.10</td>
<td>西都市</td>
<td>一ツ瀬川の穂北橋付近、杉安井塚で泡が発生</td>
<td>5 15 73</td>
<td>河川水</td>
<td>pH、EC及びイオン成分はとく に異常はみられず、陰イオン界面活性剤は検出されなかった。また、顕微鏡観察の結果、プラントンは確認されず、原因は特定できなかった。</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>死魚事故</td>
<td>H28.8.15</td>
<td>H28.8.15</td>
<td>都城市</td>
<td>柳河原川の花柳橋付近で死魚発生</td>
<td>3 34 67</td>
<td>河川水死魚</td>
<td>河川水から残留塩素、陰イオン界面活性剤及び魚毒性農薬（27種）は検出されず、原因は特定できなかった。</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>水質汚濁</td>
<td>H28.8.16</td>
<td>H28.8.16</td>
<td>西都市</td>
<td>一ツ瀬川の柳瀬大橋付近で泡が発生</td>
<td>3 16 44</td>
<td>河川水</td>
<td>pH、EC、TOC及びイオン成分 はとくに異常はみられず、陰イ オン界面活性剤は検出されな かった。また、顕微鏡観察の結果、プラントンは確認されず、原因は特定できなかった。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>死魚事故</td>
<td>H28.8.21</td>
<td>H28.8.21</td>
<td>日南市</td>
<td>内之田川でナマズやウナギ等100匹以上の死魚発生</td>
<td>3 33 64</td>
<td>河川水死魚</td>
<td>pH、DOは環境基準に適合して いた。また、河川水から魚毒性農薬の殺虫剤ベンゾエピンが検出された。</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>死魚事故</td>
<td>H28.10.19</td>
<td>H28.10.20</td>
<td>川南町</td>
<td>農業用水路で死魚発生</td>
<td>2 32 32</td>
<td>農業用水路水死魚</td>
<td>pH、DOは環境基準に適合し ていた。また、河川水から魚毒性農薬の殺虫剤フェノブカルブが検出 されたが、濃度が低く原因は特 定できなかった。</td>
<td></td>
</tr>
</tbody>
</table>
| 12 | 水質汚濁 | H28.12.14 | H28.12.19 | 延岡市 | 柄野名町樋門付近の用水路が青白濁 | 3 | 16 | 48 | 用水路水 | T・C rが検出された。また、Cu、Al、Ni、Snも、対照として搬入された清澄部の水よりも高い濃度で検出されたが、原因は特定できなかった。
| 13 | 死魚事故 | H29.2.27 | H29.2.27 | 川南町 | 黒髱川にて死魚発生 | 2 | 9 | 9 | 河川水 | 死魚河川からアンモニア性窒素が検出された。
| 14 | 水質汚濁 | H29.3.2 | H29.3.2 | 日向市 | 冨高川の高見橋付近で赤潮が発生 | 2 | 20 | 23 | 河川水 | 顕微鏡観察の結果、赤潮の原因として知られるクリプトモナス属が確認された。
| 15 | 水質汚濁 | H29.3.9 | H29.3.9 | 西都市 | ツ瀬川の穗北付近で泡が発生 | 1 | 8 | 8 | 河川水 | アンモニア性窒素が検出された。

アンモニア性窒素及び亜硝酸性窒素は環境基準に適合していた。また、顕微鏡観察の結果、プランクトンは確認されず、原因は特定できなかった。
<table>
<thead>
<tr>
<th>内 容</th>
<th>対 象</th>
<th>期 日</th>
<th>受講者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>公衆衛生</td>
<td>宮崎大学農学部獣医学科</td>
<td>5月26日</td>
<td>30</td>
</tr>
<tr>
<td>食品衛生監査員基礎研修（微生物部、衛生化学部）</td>
<td>保健所新規食品衛生監視員</td>
<td>6月16日・17日</td>
<td>8</td>
</tr>
<tr>
<td>公衆衛生</td>
<td>明倫館学院（高校通信課程）生</td>
<td>9月12日</td>
<td>15</td>
</tr>
<tr>
<td>公衆衛生</td>
<td>宮崎大学医学部医学科 3・4年生</td>
<td>9月13日・14日</td>
<td>5</td>
</tr>
<tr>
<td>公衆衛生</td>
<td>宮崎大学医学部臨床研修医</td>
<td>9月15日</td>
<td>1</td>
</tr>
<tr>
<td>食品細菌基礎研修</td>
<td>公衆衛生センター職員</td>
<td>5月23日</td>
<td>1</td>
</tr>
<tr>
<td>保健所感染症担当者基礎研修（U-PAC検体搬送、デング蚊採取伝達講習）</td>
<td>保健所職員</td>
<td>6月7日</td>
<td>18</td>
</tr>
<tr>
<td>FSIS関連サルモネラ研修</td>
<td>食肉衛生検査所職員</td>
<td>8月25日・26日</td>
<td>4</td>
</tr>
<tr>
<td>細菌検査応用技術研修</td>
<td>食肉衛生検査所職員、保健所職員</td>
<td>9月12日～9月16日</td>
<td>5</td>
</tr>
<tr>
<td>県立看護大学感染管理認定看護師教育課程講座</td>
<td>県立看護大学感染管理認定看護師（教育課程）研修生</td>
<td>10月4日〜10月6日</td>
<td>12</td>
</tr>
<tr>
<td>実習</td>
<td>国際医療福祉大学福岡保健医療学部臨床検査学科 3年生</td>
<td>10月26日</td>
<td>1</td>
</tr>
<tr>
<td>実習</td>
<td>熊本保健福祉大学臨床検査学科 3年生</td>
<td>1月19日</td>
<td>2</td>
</tr>
<tr>
<td>身の回りの細菌学習</td>
<td>宮崎市立学園木花台小学校</td>
<td>7月27日〜7月29日</td>
<td>3</td>
</tr>
<tr>
<td>残留動物用医薬品検査実務研修</td>
<td>食肉衛生検査所職員</td>
<td>5月13日</td>
<td>30</td>
</tr>
<tr>
<td>水辺環境調査研修</td>
<td>保健所職員、市町村職員他</td>
<td>5月23日、5月24日、6月2日、6月3日、6月9日、6月10日、6月27日、7月1日、7月5日、7月15日、8月4日、8月26日、8月31日、10月18日、10月21日</td>
<td>616</td>
</tr>
<tr>
<td>身近な水環境に関する学習会</td>
<td>関西地区環境保全アドバイザー等、都農町立都農小学校</td>
<td>5月23日、5月24日、6月2日、6月3日、6月9日、6月10日、6月27日、7月1日、7月5日、7月15日、8月4日、8月26日、8月31日、10月18日</td>
<td>616</td>
</tr>
<tr>
<td>就業体験学習（環境保全）</td>
<td>九州大学工学部3年生</td>
<td>8月25日</td>
<td>2</td>
</tr>
<tr>
<td>生活環境調査研修（大気・水）</td>
<td>宮崎大学農学部獣医学科3年生</td>
<td>12月22日</td>
<td>92</td>
</tr>
<tr>
<td>食品衛生監視員初任者研修</td>
<td>保健所における食品衛生監視員初任者</td>
<td>5月27日</td>
<td>13</td>
</tr>
<tr>
<td>食品衛生検査施設の業務管理に係る食品衛生検査部門責任者協議会及び検査区分責任者会議</td>
<td>食品衛生検査部門責任者検査区分責任者</td>
<td>7月26日</td>
<td>28</td>
</tr>
<tr>
<td>食品衛生検査施設の業務管理に係る検査担当者研修会</td>
<td>食品衛生検査担当者</td>
<td>7月29日</td>
<td>32</td>
</tr>
</tbody>
</table>

合 計 | | | 999 |
3 研究成果発表会

日 時：2016年2月10日(金)
場 所：宮崎県企業局 県電ホール

口頭発表

<table>
<thead>
<tr>
<th>発表演題</th>
<th>発表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>微生物部</td>
<td></td>
</tr>
<tr>
<td>・本県における重症熱性血小板減少症候群に関する実態調査（第2報）～ヒトに関する実態調査～ 乳糖分解性を指標とした下痢原性大腸菌の解析</td>
<td>主任研究員 野町 太朗 技師 水流 奈己</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>衛生化学部</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>・調理におけるアレルゲンの移行性の検証 本県における環境放射能水準の推移</td>
<td>副部長 西村 幸江 技師 野口 翔</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>環境科学部</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>・九州・沖縄・山口地方酸性雨共同調査研究（第IV期）について 県内河川における底生動物の出現状況と理化学検査</td>
<td>主任研究員 岡田 守道 技師 廣池 勇太</td>
</tr>
</tbody>
</table>

ポスターセッション

<table>
<thead>
<tr>
<th>発表演題</th>
<th>発表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>微生物部</td>
<td></td>
</tr>
<tr>
<td>・収去食品における微生物検査状況（2009年度～2016年度） 宮崎県蚊媒介感染症対策事業におけるモニタリング調査結果 本県における重症熱性血小板減少症候群に関する実態調査 ～マダニ及び動物に関する調査～ 病因物質不明の食中毒事例における Unicapsula seriolae の検査結果</td>
<td>主任研究員 山田 亨 技師 有馬 菜莉 主任研究員 野町 太朗 主任技師 福留 智子</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>衛生化学部</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>・収去農産物の残留農薬検査結果（平成25年度～平成28年度） 収去食品の食品添加物検査結果（平成23年度～平成27年度）</td>
<td>主任研究員 安部 留美子 技師 渡辺 利奈</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>環境科学部</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>・水辺環境調査研修の指導者育成研修会の現状と満足度 水質汚濁事故における検査等の概要について －平成27年度～平成28年度における調査結果事例－</td>
<td>技師 廣池 勇太 副部長 島田 玲子</td>
</tr>
</tbody>
</table>
4 調査研究課題の外部評価

(1) 調査研究評価委員会による評価

当研究所が行う調査研究課題の公平性・客観性・透明性を確保するため、2007(平成19)
年度から「宮崎県衛生環境研究所調査研究
課題評価要綱」に基づいて、外部の専門家
を委員とする調査研究評価委員会(表1)によ
る課題の評価を実施している。

2016(平成28)年度は、7月28日に開催し
た委員会において、2015(平成27)年度に終
了した調査研究課題5課題並びに2016年度
に継続して実施する16課題及び2016年度
から新たに実施する4課題計25課題のうち、
特に重要な6課題について評価を受けた。

(2) 評価結果と今後の対応

6課題に対する評価(5段階評価)は、いず
れも4（高く評価できる）であった。

委員会で出された意見等を参考に、実際
に課題に取り組む中で実施計画の見直し等
を行った。

委員会の評価並びに主な意見及び研究所
としての対応は、表2のとおりである。

今後とも、評価制度の趣旨を踏まえ、研究
所業務の活性化に取り組んでいくとともに、
保健衛生・環境保全分野における県内の科
学的・技術的中核機関としての職務の遂行
に努めていく。

表1 宮崎県衛生環境研究所調査研究評価委員会

<table>
<thead>
<tr>
<th>氏 名</th>
<th>役 職</th>
</tr>
</thead>
<tbody>
<tr>
<td>○南嶋 洋一</td>
<td>古賀総合病院 臨床検査部長（宮崎大学名誉教授）</td>
</tr>
<tr>
<td>山本 隆一</td>
<td>九州保健福祉大学 副学長</td>
</tr>
<tr>
<td>髙村 一志</td>
<td>宮崎県医師会 常任理事</td>
</tr>
<tr>
<td>後藤 義孝</td>
<td>宮崎大学農学部 獣医学科教授</td>
</tr>
<tr>
<td>土手 裕</td>
<td>宮崎大学工学部 社会環境システム工学科教授</td>
</tr>
</tbody>
</table>

○：委員長
表 2 調査研究課題についての調査研究評価委員会の評価並びに主な意見及び所としての対応

<table>
<thead>
<tr>
<th>課題・研究期間・評価</th>
<th>主な意見</th>
<th>対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>本県における重症熱性血小板減少症候群（SFTS）に関する実態調査</td>
<td>本調査研究は、以下の課題・疑問の解明に寄与することと期待される。</td>
<td></td>
</tr>
<tr>
<td>研究期間</td>
<td>平成26年度～平成28年度</td>
<td>意見 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>①自然界におけるSFTSVの感染環</td>
</tr>
<tr>
<td></td>
<td></td>
<td>②SFTSV保有マダニは全国に在しているのに、なぜ感染者は西日本20府県に偏在するのか、その理由</td>
</tr>
<tr>
<td></td>
<td></td>
<td>③宮崎県は感染者が33名で、なぜ日本一であるのか、その理由</td>
</tr>
<tr>
<td></td>
<td></td>
<td>①について</td>
</tr>
<tr>
<td></td>
<td></td>
<td>調査はマダニからのSFTSV遺伝子検出が必須であると考えられるため、今後更なる検討を実施していく予定にしています。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>②について</td>
</tr>
<tr>
<td></td>
<td></td>
<td>感染者が西日本に偏在する理由の解明は、感染者のいない県との比較が必要となることから当県のみの調査に先立つと考えられます。国立感染症研究所の研究者から経験をいただいていることから、今後発生する可能性はありますと考えています。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>③について</td>
</tr>
<tr>
<td></td>
<td></td>
<td>宮崎県が患者数1位の理由は不明ですが、平成25年から平成27年までの年間患者発生数はほぼ横ばいであり、一例として全国第2位の患者数である愛媛県では、SFTSに対する啓発活動で患者発生数が大幅に減少しており、感染者対策室を含めた調査結果をいかに県民に周知させるかが大切であると考えています。</td>
</tr>
<tr>
<td></td>
<td>方法論としては、春から秋の、マダニの活動期であり、感染者も多発する時期に、発生した患者の生活状況を対象にスポット調査する、ということではあるだろう（一部沖縄まで行うよう）。また、シカとの接点は如何であろうか（他県と比較上）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>スポット調査は現在も実施しておりますが、他の発生地についても可能な限りスポット調査を実施していきたいと考えています。野生動物に関する調査についても、採血した検体の保存、輸送問題等、調査上の支援についてクリア出来れば、実施したいと考えています。</td>
<td></td>
</tr>
</tbody>
</table>

評価：4（高く評価できる）
<table>
<thead>
<tr>
<th>課題・研究期間・評価</th>
<th>本県における重症熱性血小板減少症候群（SFTS）に関する実態調査</th>
</tr>
</thead>
</table>
| 意見7 | マダニが冬季でも活動し感染症を引き起こす可能性があることなど を明らかにしており、県民への冬季におけるマダニ対策についても広報活動をしっかりおこなっていただきたい。
| 対応 | 今回の中間報告、過去の調査結果及び今年度実施予定の調査結果については取り纏めを行い、所報や研修会、また感染症対策室と協力し県HP等で広く県民への広報を実施したいと考えています。

| 意見8 | ペット動物の1〜3%がマダニに噛まれてSFTSVに感染した形跡が認められており、ペットに対するマダニ対策についても提言していることは、高く評価できる。
| 対応 | 今回の犬・猫関連の調査は飼い主への意識調査と、調査結果を基にした飼い主へのSFTSに関する情報提供、防除方法の周知が目的の一つとしてあります。調査が全てまとまった後は衛生管理課や獣医師会と協力して小動物臨床病院等を通じて飼い主への周知を行えばと考えています。
意見1
E. albertiiの下痢症患者から分離された同菌のルーツ・原因・媒介食品を知りたい。また、E. fergusoniiの由来や薬剤耐性を知りたい。

対応
下痢症の関連を明らかにすることは、重要な問題だと考えます。現在のところ、E. albertii、E. fergusoniiも分離数が少ないことから、今後さらに菌株を収集し、調査を継続していきたいと考えております。

意見2
病原因子の一つである可能性は高いと考えられます。本研究は遺伝子の検出のみで毒素タンパクの定量が行われていないことから、病原因子との関与が明らかになり難いのが現状です。病原因子の一つとするには、さらなる研究が必要だと考えています。

対応
CDTは、E. albertiiの場合、全例陽性であり、病原因子の一つと解釈できるでしょうか？

意見3
CDTは、ジフィシル菌のCDTとの混同を避ける上で、例えばEalbCdtといった表記では如何であろうか。CDTは“細胞致死性膨張性毒素”なる訳語が散見されるが、distendingを“膨化”とする貴訳には賛成である。ただ、“致死”は通常個体を対象に用いられるので、もし定訳（学術用語）がまだ無ければ、宮崎県衛生環境研究所オリジナルの“細胞致死性膨張性毒素”などは如何であろうか。

対応
ジフィシル菌のCDTとは、たしかに混同しやすく区別できるような表記が望ましいと思います。ただ、現在散見される文献ではCDTと略されることが多いのでCDTと表記させていただきたいと思います。CDTの訳語については、定訳がないことから、細胞致死性膨張性毒素を訳語として使うことを検討したいと考えております。

意見4
下痢患者の大腸菌の解析は重要であるが、研究課題名からは、報告された研究内容を掴めない恐れがある。

対応
最終的な報告時には、当初の課題名が変更になる可能性があることを了承いただき、研究内容に沿った課題名にしたいと考えております。

意見5
乳糖非分解性菌であるE. albertiiは、CDTと検出されることが知見があっただけ、乳糖非分解性とCDTには関連性があるのではないかと考え、調査を行いました。しかし、乳糖非分解性の大腸菌からはCDTがほとんど検出されなかったことから、結果として関連性の低い内容となっている。

対応
乳糖非分解性菌であるE. albertiiは、CDTが検出されるという知見があっただけ、乳糖非分解性とCDTには関連性があるのではないかと考え、調査を行いました。しかし、乳糖非分解性の大腸菌からはCDTがほとんど検出されなかったことから、結果として関連性の低い内容となっている。

意見6
本県の下痢症患者から分離される病原因子不明の大腸菌解析の一環であることが理解できるが、最終目的（この研究で何を明らかにし、県民の負託にどう応えようか）をもつべき明確に記述されなければならないが良い。課題名もこの研究内容の重要性を感じ取ることができないのでは工夫されては如何かと思う。

対応
目的を明確にし、当初の課題名が変更になる可能性があることを了承いただいた上で、研究内容に沿った課題名によう工夫したいと思います。

意見7
下痢症患者から分離される病原因子不明のE. coli株（乳糖非分解性株を含む）と病との関連性を明らかにすること（関連性を評価する方法の検討が必要）に尽きるのではないかと考える。

対応
下痢症患者から分離される病原因子不明のE. coli株については、継続して菌株を収集していきたいと考えております。
今後の試験対象として、輸入農産物の「ポストハーベスト農薬」を加えてみてはどうか。

対応
ポストハーベスト農薬は食品添加物としての残留基準が定められているため、現在当所では食品添加物試験で対応しています。しかし、あくまで「農薬」であるため、残留農薬試験の試験対象に加えることについても検討の余地はあるかと考えます。

農産物の試験品目に「マンゴー」は入っていないのか。

対応
本年度の農産物試験品目にはマンゴーは含まれておりません。しかし、マンゴーの生産量は全国第2位であり、本県の代表的な農産物として挙げられることが多いことから、今後関係課とも協議し、試験品目の候補の1つとして検討する必要があるかと考えます。

今後も引き続き、試験の精度向上とコストの削減方法など、問題となりそうな部分について、改善に向けて努力してほしい。

対応
昨年度は畜産物中の残留農薬試験の迅速化についての検討を行い、妥当性評価も終了しましたが、検討した全ての農薬で妥当性が評価されたわけではないため、さらなる試験法の改良及び精度向上については今後検討していく必要があると考えます。また、コストについては作業性や作業時間と比較しながら、削減の余地があると判断されればその方法を模索したいと考えます。

他県の試験研究機関等と連携することで、より効率的な研究が期待できる。

対応
全国や九州の試験研究機関が参加する協議会が毎年開催されており、そのような場を利用して担当者間での情報の共有及び解決への協議を行っていきたいと考えます。

食品中残留農薬試験の迅速化についての検討

研究期間
平成27年度〜平成29年度
評価：4
（高く評価できる）

牛乳及び蜂蜜中の残留動物用医薬品の迅速分析試験法の検討及び妥当性評価

研究期間
平成26年度〜平成28年度
評価：4
（高く評価できる）

コリスチンはヒトの耐性菌感染症治療として広く使用されているが、近年、家畜へ成長促進として乱用されたことで、プラスミド媒介性の耐性遺伝子を持つ家畜由来の大腸菌が出現しています。このことから、コリスチンの家畜由来の残留をモニタリングすることは重要であるので、動物用医薬品の試験対象品目に加えてみてはどうでしょうか。

対応
薬剤耐性菌の出現と拡散に関しては公衆衛生上重要な問題です。今後、残留動物用医薬品の検査項目にコリスチンを追加する方向で検討いたします。

本調査研究で検討された試験法では、テトラサイクリン系抗生物質の定量試験に適していなかったので、今後の当該試験法の改善に努めてください。

対応
今後はテトラサイクリン系抗生物質に注目し、試験法の改善を行います。
<table>
<thead>
<tr>
<th>課題・研究期間・評価</th>
<th>ICP-MSによる県内事業場排水中重金属類分析条件の検討</th>
<th>研究期間</th>
<th>平成26年度～平成28年度</th>
<th>評価：4 (高く評価できる)</th>
</tr>
</thead>
<tbody>
<tr>
<td>意見 1</td>
<td>非常に価値ある調査研究である。環境モニタリングは継続性が重要であるため、今後も研究の継続が望まれる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対応 1</td>
<td>調査データを継続していくことが非常に重要だと思うためで、今後も環境モニタリングを継続していきたいと思います。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>意見 2</td>
<td>県民に向けてのわかりやすい成果の公表が望まれる。また、国際的な場での発表も期待する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対応 2</td>
<td>衛生環境研究所成果発表会において本内容を報告する予定としておりますので、県民の皆様にもわかりやすく説明を行いたいと思います。その後、概要を研究所年報にまとめるとともにホームページ上に広く公表したいと思います。また、発表の場については、まず、九州衛生環境技術協議会音楽分科会において口頭発表を予定しておりますので、共同研究の皆様のご意見も踏まえて検討したいと思います。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>意見 3</td>
<td>大気汚染の原因物質について、自然由来と人間的な活動由来を区別できる方法の開発を期待する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対応 3</td>
<td>自然由来と人間的な活動由来を区別する方法としては、大気の測定結果から逆に逆って、各種発生源の寄与割合を推定する方法があり、現状、環境省等により、PM2.5の成分分析結果に係る発生源粒子の化学成分データ（発生源プロファイル）の整備が進められております。これらには酸性雨調査で測定しているイオン成分も含まれることから、今後、研究の参考にしていきたいと思います。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>意見 4</td>
<td>硝酸イオン濃度の季節変動について、経年変化の有無について解析してほしい。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対応 4</td>
<td>硝酸イオン濃度について、各地域ごとに、各季節ごとに経年変化を解析してみましたが、不規則に増減を繰り返しており、主立った傾向を見いだせませんでした。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>意見 1</td>
<td>分析手法の検討という技術的な課題であり、さらなる進展を期待する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対応 1</td>
<td>当所における検査は、事業者を行政指導する大切な根拠となることから、今後も分析手法の検討を含む技術の向上を継続し、期待にお応えできるよう努力してまいりたいと考えています。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>意見 2</td>
<td>県民に向けてのわかりやすい成果の公表が望まれる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対応 2</td>
<td>研究成果については、当所の研究成果発表会や研報等での報告の他、ホームページへの掲載により広く県民に公表する予定としています。その際には、可能な限り、県民に分かりやすい内容で情報提供していきたいと考えています。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>意見 3</td>
<td>本研究の最終目的がどこにあるのか、今回の報告では良くわかりなかった。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>対応 3</td>
<td>事業場排水中の重金属類（Cd, Pb, Asなど）は規制強化により、より低濃度を正確に分析することが求められています。また、事故や災害等を含め環境汚染が懸念される場合、多くの検体を短時間で分析する必要があります。本研究は、従来よりも短時間、かつ、正確な微量成分の分析を目的としており、これにより、水質汚濁をそれに伴う県民の健康被害の未然防止のための行政の迅速な対応が可能となると考えております。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II 発表

1 誌上発表
 ○ Cycloextrin Pyruvate Solid Medium（CPSM 培地）を用いた百日咳菌の分離
 ○ The proline residue at position 319 of BvgS is essential for BvgAS activation in Bordetella pertussis

2 学会及び研究発表会
 ○ 乳児下気道炎入院症例における百日咳の検討
 ○ 下痢原性大腸菌およびノロウイルス感染症の発生動向
 ○ 改良型 CSM 培地を用いた百日咳菌の分離について
 ○ 来院時心肺停止状態であった乳児百日咳の一例
 ○ 無症候性保菌者からの百日咳菌分離について
 ○ 比較ゲノムによる腸管出血性大腸菌 O145:H28 の多様性解析
 ○ 国内外で分離された 521 株の腸管出血性大腸菌 O26 の全ゲノム系統解析と病原遺伝子レパートリー解析
 ○ 九州・沖縄・山口地方酸性雨共同調査研究（第Ⅳ期）について
 ○ 河川環境保全のための養豚場に対する重点監視指導について
 ○ 宮崎県における『水辺環境学習・調査』の充実化に向けた取組
Cycloexetin Pyruvate Solid Medium（CPSM 培地）を用いた百日咳菌の分離

吉野修司，水流奈己，荒井路子，元明秀成
病原微生物検出情報 Vol.33 No12. 2017

CPSM 培地を作製し、さらに最終濃度 5mM のピルビン酸ナトリウムを添加した CPSM 培地として改良することで、原法に比べ百日咳菌を良好に分離できることが確認されているので報告する。

CPSM 培地作製法

基礎培地: 各試薬の保存液を作製し、メジューム瓶等に入れ 121℃ 15 分滅菌する。滅菌後は冷蔵保存しておく。

サプリメント: 各試薬の溶液を混合後、DW で全量を 100mL とし、0.22μm のフィルターでろ過滅菌する。ろ過滅菌後は 5mL ずつ分注し、-20℃ 以下で凍結保存しておく。培地が必要になった際は冷蔵保存しておいた基礎培地の各保存液を規定量混合し、寒天を加えて 121℃ 15 分高圧滅菌する。滅菌後は 52℃ に冷却後、凍結保存しておいたサプリメントを加え平板とする。

培養法および CPSM 培地上でのコロニー鑑別

百日咳菌は培養後 4 〜 5 日目から微細なコロニーとして観察されるが、7 〜 10 日後に出現することもあるため、乾燥しないよう空き缶などに入れ長期培養する。なお、CEX 添加培地では百日咳菌が分離されにくい傾向があり、CEX 非添加培地を優先的に用いた方がよい。百日咳菌は教科書的に培養 4 〜 5 日目に形成される真珠様の光沢のあるコロニーと表現されるが、夾雑菌との鑑別が難しい場合は実体顕微鏡を利用した方がよい。疑わしいコロニーはグラム染色を行い、グラム陰性短桿菌であれば検査マニュアル等に準じ同定を行う。なお、パラ百日咳菌が分離された場合は培地が褐色を呈するので鑑別は容易である。

おわりに

百日咳菌の分離はワクチン未接種の乳児では比較的容易であるが、検査対象がワクチンに接種された乳児や成人は難しい。しかし、培地改良後の 2015 年以降、乳児以外の散発事例や家族調査において LAMP 法陽性者の約 54

%から菌が分離され、60 〜 70 代の高齢者や無症状者からも菌が分離されていることから、当所では遺伝子検査で陽性になった検体については積極的に菌の分離を実施することにしている。また、今回示した方法は保存溶液を作製しており、集団発生などの突発的な事例でも迅速に検体が作製できることから、地方衛生研究所としても菌の分離や PFGE を含めた行政検査依頼にも対応できるものと思われる。

○The proline residue at position 319 of BvgS is essential for BvgAS activation in Bordetella pertussis

Yukihiro Hiramatsu1), Shuji Yoshino2), Yoshiko Yamamura3), Nao Otsuka1), Keigo Shibayama1), Mineo Watanabe4), Kazunari Kamachi1)

1)Department of Bacteriology II, National Institute of Infectious Diseases, 2)Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, 3)Department of Pediatrics, Miyazaki Prefectural Miyazaki Hospital, 4)Graduate School of Infection Control Sciences, Kitasato University

Pathogens and Disease, 75(1), 2017, ftx011

Bordetella pertussis is the etiological agent of pertussis and produces various virulence factors, including pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (PRN), most of which are positively regulated by the BvgAS two-component sensory transduction system. Here, we describe a B. pertussis isolate not expressing PT, FHA and PRN recovered from a pertussis patient. Sequencing revealed that the bvgS gene of this isolate contains a spontaneous mutation (C>A at position 955) causing the proline residue at position 319 of the BvgS protein to be substituted by threonine. Moreover, loss of PT, FHA and PRN recovered from a pertussis patient. Sequencing revealed that the bvgS gene of this isolate contains a spontaneous mutation (C>A at position 955) causing the proline residue at position 319 of the BvgS protein to be substituted by threonine. Moreover, loss of PT, FHA and PRN expression was completely restored by complementation with a wild-type bvgAS locus, indicating that this non-synonymous substitution in bvgS leads to impaired BvgS function. Our findings indicate that the proline residue at position 319 in this protein plays an essential role in activation of
the BvgAS system and, therefore, subsequent expression of Bvg-regulated virulence factors in *B. pertussis*.

＜学会及び研究発表会＞

○乳児下気道炎入院症例における百日咳の検討
- 三原由佳, 中谷圭吾, 吉野修司, 石井茂樹
- 宮崎県立宮崎病院小児科, 宮崎県衛生環境研究所

「第 90 回日本感染症学会 (平成 28 年 4 月 15 日, 16 日 仙台市)」

【目的】冬期乳児下気道感染における百日咳の頻度とその臨床的特徴および百日咳の家族内感染について検討した。

【方法】2014 年 11 月から 2015 年 3 月までに下気道炎で入院した 1 歳未満乳児全例を対象に, 鼻咽頭塗抹液を用い百日咳は分離・PCR 法・LAMP 法を実施し, 呼吸器ウイルスは 11 種類を対象として抗原迅速検査・multiplex RT-PCR 法を実施した。百日咳感染例・非感染例それぞれの臨床像を後方視的に比較検討し, 百日咳感染例で同居家族の百日咳検査を行った。本研究は当院倫理委員会の承認・家族の同意を得た。

【結果】基礎疾患例を除外した 49 例中, 百日咳菌 10 例, 呼吸器ウイルスは重複例を含む 41 例 (RSV 31), 両者の同時検出 8 例であった。A 群: 百日咳分離陽性 4 例, B 群: 百日咳遺伝子検査のみ陽性 6 例, C 群: 百日咳非感染 39 例に分けて比較した。A 群が B・C 群に比べ有意だったのは, スタッカート, 発症より検査までの日数, 重症度, 白血球・リンパ球数だった。一方, B・C 群ではいずれも有意差はなかった。また百日咳分離陽性例のうち 3 例で両親または同胞からの家族内感染を確認した。

【考察】乳児下気道ウイルス感染と百日咳の混合感染を比較的多く認めた。百日咳分離陽性例は百日咳に特徴的な症状を呈したが, 遺伝子検査のみ陽性例は非感染例との相違なく, 脳症が認めず下気道への感染源となる可能性が考えられた。成人・青年層が乳児百日咳の感染源となっており感染対策が望まれる。

○下痢原性大腸菌およびノロウイルス感染症の発生動向
- 吉野修司

「第 51 回日臨技九州支部医学検査学会シンポジウム(平成 28 年 10 月 8 日, 9 日 佐賀市)」

EHEC は菌の分離に特化した培地の使用やイムノクロマト法による Stx (行政用語では VT) の検出により, 医療機関でも検査は可能であり, 毎年全国で 4000 件前後の届出がなされている。一方, 他の下痢原性大腸菌は PCR 法等による遺伝子検査で病原菌を調べないかぎり非病原性大腸菌との区別が困難で, 下痢症の起因菌であるかどうかは判断できない。地方衛生研究所では食中毒や集団感染が発生した際に, 行政検査として起因菌および病原菌の特定を行うが, 通常の医療機関等で病原菌の検出まで行える施設は限られており, EHEC を除く下痢原性大腸菌の発生動向は掴めていないのが現状である。また, 別菌種である *E.albertii* を下痢原性大腸菌の範疇に含めるのか, 行政的な位置づけをどうするかなどが曖昧で, 下痢原性大腸菌の発生動向を把握するのはより困難な状況になっている。

ノロウイルス (NoV) は遺伝子群 (Genogroup: G I 〜GV) で分類されており, ヒトに感染する NoV が主に G I と G II であることから, 現在のところ G I を 9, G II を 22 の遺伝子型 (genotype: G I.1 〜9 および G II.1 〜22) に細分類している。なお, 多くの種類の遺伝子型はその抗原性も多様であることが示唆されており, 簡易キットにおける偽陰性の一因となっている。また, 通常の診療では遺伝子型別は不要であるが, 行政処分が伴う食中毒発生時などでは遺伝子型別まで求められる場合がある。2010 年〜2013 年の各シーズンで報告された NoV の遺伝子型別は G II.4 が最も多く, シーズン毎に変動する場合があり (IASR Vol.35 No.7), さらに新たに G II.17 変異型も報告されていることから, 今後の流行状況に注意する必要がある。

○改良型 CSM 培地を用いた百日咳菌の分離について
- 吉野修司, 水流奈己, 荒井路子, 元明秀成

「第 42 回九州衛生環境技術協議会(平成 28 年 10 月 13 日, 14 日 福岡市)」
【はじめに】百日咳菌の分離は特殊な培地を用いる必要があり、一般的にワクチン既接種者や成人では難しいとされているが、今回、保存性に優れた半合成培地である Cycloextrin Solid Medium（CSM 培地）の作製法を変更することで培地が迅速に作製でき、さらに最終濃度 5mM のビルビン酸 Na を添加することで、原法に比べ百日咳菌を良好に分離できることを確認したので報告する。

【方法】培地の作製を簡便にするため、モル換算した試薬の保存溶液を作製し、保存液を混合するだけで調製できるようにした。ビルビン酸 Na の効果の検証には MLVA のタイプが異なる 3 種類 (MT26, MT27, MT29) の臨床分離株およびワクチン株である東浜株を用いた。

【結果】CSM 培地原法に出現したコロニー数を 1 とした場合、平均して MT26: 2.9 倍、MT27: 3.1 倍、MT29: 2.7 倍、東浜株: 3.3 倍コロニー数が増加した。また、コロニーは原法に比べ大きくなり、特に東浜株でその効果が明瞭であることが認められた。

【考察】今回検討した作製法では、試薬を秤量ではなく容量で調製することにより、pH 調整が不要で、迅速かつ誰が行ってもロット間差を生じることなく培地を作製することが可能となった。さらに、CSM 培地に最終濃度 5mM のビルビン酸 Na を加えることで、MLVA のタイプに関わらず原法より 2.7〜3.3 倍のコロニー数が増えて、コロニーも大きくなることが確認された。菌の分離は百日咳検査における gold standard と位置付けられる PFGE の実施やワクチン株と抗原性が異なる変異株や薬剤耐性菌の出現を監視するためにも重要である。今回検討した方法では保存溶液を準備しておけば、突発的な事例の際にも迅速に培地作製が可能で、菌の分離まで含めた行政依頼に対応できるものと推察された。

○無症候性保菌者からの百日咳菌分離について
・吉野修司 1)、水流奈己 1)、三原由佳 2)、石井茂樹 2)、中谷圭吾 2)、蒲地一成 3)
1)宮崎県衛生環境研究所、2)宮崎県立宮崎病院小児科、3)国立感染症研究所細菌第二部
「第 86 回日本感染症学会西日本地方会(平成 28 年 11 月 24 日～26 日 宜野湾市)」

【はじめに】近年、青年・成人層における百日咳感染が増加しており、小児への感染源となることが懸念されている。今回、家族内感染による乳児百日咳で来院時心肺停止状態を呈した症例を経験したので報告する。

【症例】1 か月女児、日齢 33 より咳と鼻汁が出、日齢 36 より気遊低下、日齢 37 に喘鳴が出現し、全身状態不良であり当院を紹介受診した。到着時心肺停止状態であり CPR を開始、自己心拍は 2 分後に再開した。CT 上肺炎像を認め、肺炎による急性呼吸不全と診断した。入院時白血球数 29130/μl (リンパ球 69.8%)、CRP 0.01mg/dl であり、SBT/ABPC 静注、CAM 内服を開始した。入院 4 日目に入院時鼻咽頭拭い液で百日咳菌 LAMP陽性と判明し百日咳と診断した。のちに同菌分離陽性、ペア血清で PT-IgG4 倍以上の上昇が確認され、入院 6 日日に抜管の後も、発症性咳、吸気性笛声、チアノーゼ、無呼吸などの症状が続いたが、入院 23 日目、症状軽快につき後遺症なく退院した。本児の百日咳感染判明後速やかに、接触のあった家族 5 人の調査と予防内服を行った。その結果、本児の症状出現 2 週前より咳を認めた同居祖母と、本児発症 1 週後より咳が出現した同居祖父に百日咳菌 LAMP法・分離陽性であった。PT-IgG は祖母 96EU/ml、祖父 11EU/ml（咳が出現よりそれぞれ 26 日目、4 日目）であった。

【考察】家族内調査より同居祖母が発端の百日咳の家族内感染と考えられ、高齢者も感染源となることが示された。ワクチン未接種の乳児早期百日咳は重症化しやすく、効果的治療法もないため、妊婦を含めた周辺家族への事前のワクチン接種が望まられる。乳児 CPAOA 症例では百日咳も鑑別の一つとして対応する必要があると考えられた。

○来院時心肺停止状態であった乳児百日咳の一例
・山村佳子 1)、明利聡瑠 1)、石井茂樹 2)、中谷圭吾 2)、吉野修司 2)
1)宮崎県立宮崎病院小児科、2)宮崎県立宮崎病院小児科、3)国立感染症研究所細菌第二部
「第 48 回日本小児感染症学会（平成 28 年 11 月 19、20 日 岡山市）」
行うとともに，家族内調査においてワクチン既接種の無症状者から菌が分離されたのでその概要を報告する。

【方法】百日咳と診断された乳児の家族8名から同意を得て鼻咽頭ぬぐい液を採取し，DNA抽出後，IS481，IS1001，B2M（β-2微球蛋白：ヒト陽性コントロール）を標的としたreal-time PCR法を行った。IS481が陽性の場合はLAMP法でB. pertussisの確認を行った。菌の分離は独自に改良した最終濃度5mMのピルビン酸Na添加CSM培地を用いた。なお，菌が分離された場合はXba Iを用いたPFGEを実施した。

【結果】家族8名中5名がLAMP法陽性，百日咳菌分離陽性であった。PFGEの結果から，分離された5株は同一由来と考えられた。5名中2名は無症状の小児で，ワクチンをそれぞれ3，4回接種していた（最終接種からそれぞれ1，7年経過）。さらに，B2Mとの比較から無症状でも菌量が多いことが推測された。

【考察】近年，海外での動物感染実験や疫学解析等の結果から，現行ワクチンは症状を軽減させるが，感染や菌の増殖は抑えられないことが報告されている。今回の結果から，本県においても同様の事例があると考えられた。また，ワクチン未接種の乳児に対する感染源として，青年・成人層が問題にされているが，加えて無症候性保菌者も感染源になる可能性があり，抗菌薬の予防投与範囲は慎重に設定する必要があるものと思われた。

○比較ゲノムによる腸管出血性大腸菌O145:H28の多様性解析

○国内外で分離された521株の腸管出血性大腸菌O26の全ゲノム系統解析と病原遺伝子レパートリー解析
林哲也

九州大院・医・細菌、宮崎県衛環研・微生物、富山県衛研・細菌、大阪府公衛研・感染、福岡県保環研・保科、鹿児島大院・医歯・微生物

九州大学

九州大学の研究者らは、O157による腸管出血性大腸菌（EHEC）感染症では、O157による症例が最も多いが、non-O157 EHECによる集団感染事例も世界中で頻発している。国内のnon-O157 EHECでは、O26にによる事例が最も多い。

O26はMLST解析によりST21とST29に大別される。

EHECの主要病原因である志賀毒素（Stx）には、Stx1とStx2が存在し、Stx2産生性が重症化に関わることについては、欧州のST29 Stx2単独陽性株は、わずかに存在する程度であった。一方、ST21の様々な亜系統において、Stx2の伝播が次々と起こっていることが判明し、新たな強毒クローンの出現が懸念される。

他方、Stx2産生株について、系統分布の解析とStx2およびその他病原遺伝子の保存性を解析した。

【方法】国内分離株284（32株はウシ由来）と海外分離株56（27株はウシ由来）を収集し、Illumina HiSeqでシークエンスした。また、国内外の137株（44株はウシ由来）のゲノム情報を取得した。計521株について、Stx型別、MLST、全ゲノム系統解析、病原遺伝子の保存性を解析した。

【結果と考察】国内分離株の大部分はST21であり、欧州のST29 Stx2単独陽性株は、わずかに存在する程度であった。一方、ST21の様々な亜系統において、Stx2の伝播が次々と起こっていることが判明し、新たな強毒クローニングの出現が懸念される。その他の病原遺伝子については、非O26株間で高く保存されていた。

○九州・沖縄・山口地方酸性雨共同調査研究(第Ⅳ期)について

・岡田守道、赤崎いずみ、三角敏明

現宮崎県都城保健所

「第42回九州衛生環境技術協議会」

九州・沖縄・山口地方酸性雨共同調査研究(第IV期)により平成14〜26年間のデータを解析した結果、本地方のpHの平均は、平成17年度までは全国平均より高い値であったが、平成24年度以降は全国平均より上昇しているのに対し、本地方では低下の傾向にあった。N03濃度は九州北部を除き、大気からの季節風が吹く冬季に増加傾向にあることから、大気からの影響が示唆された。非海塩性SO42-濃度は、平成18年度から19年度を境に増加傾向からわずかに減少傾向に変わっており、これは市街でのSO2排出量の変動と連動した挙動であったが、一方、九州西部及び南部では平成23年度以降濃度が逆に増加していることから、活動が活発化している桜島や阿蘇山など、火山の影響が示唆された。

○河川環境保全のための養豚場に対する重点監視指導について

中山能久、島田玲子、三角敏明

「第42回九州衛生環境技術協議会」

本県は、肉用牛や豚などの畜産業が盛んであり、畜産施設を原因とする悪臭や水質汚濁に係る苦情も多い。今回、日間平均排出水量が50㎥未満のため、排出水の水質検査のみでは指導に限界がある複数の養豚場に対し、保健所と連携した集中的な指導を実施した。排出水の水質測定を実施し、結果を当所が独自に開発したペンタダイグラムを用いて解析した。解析結果に基づき各養豚場における水処理の改善点を推定した資料を保健所に提供し、改善指導を行った結果、いくつかの養豚場において排出水の水質が改善し、河川の水質改善につながることができた。

○宮崎県における「水辺環境学習・調査」の充実化に向けた取組

・廣池勇太

現宮崎県都城保健所

「第42回九州衛生環境技術協議会」

本県では、平成17年度に「水辺環境指標」を創設し、同時に「水辺環境調査時の指導者用マニュアル」を作成。小中学生を対象とした水辺環境学習・調査を実施している。マニュアルは、保健所職員や市町村職員を指導者の対象
としているが、学校教員や大学生等の一般の方にも活用できるよう、「水生生物」に関する資料や一級河川の生物相の情報を追加した改訂を平成28年度に行った。また、従来の水辺環境学習・調査に、事前に学ぶ「事前学習」と、水辺での調査後に実施する「まとめと発表」を組み合わせた「総合環境学習」を市町村の環境主管課や教育委員会に提案し、環境に関する包括的な学習に取り組んでいく。
Ⅲ 調査研究

○ 感染症発生動向調査事業における宮崎県の患者発生状況—2016年（平成28年）—
○ 宮崎県の感染症発生動向調査事業におけるウイルス検出報告（2016年）
○ 乳糖分解性を指標とした下痢原性大腸菌の解析
○ 本県における重症性熱性血小板減少症候群に関する実態調査（第2報）
○ 宮崎県における環境放射能調査（第29報）
○ 調理におけるアレルゲンの移行性の検証
○ 宮崎県沿岸海域におけるCODに関連する有機物指標と栄養塩類等について
○ 九州・沖縄・山口地方酸性雨共同調査研究（第IV期）について
○ 小丸川の底生動物相と水質
○ 川内川の底生動物相と水質
○ 県内河川における底生動物の出現状況と理化学検査との相関
○ 水辺環境調査の指導者育成研修会の現状と満足度
感染症発生動向調査事業における宮崎県の患者発生状況
－2016 年(平成 28 年)－

馬見塚理奈 三浦美穂 1) 吉野修司 1) 元明秀成 1) 濵田洋彦 2)

Summary of the 2016 Annual Report According to the National Epidemiological Surveillance of Infectious Diseases in Miyazaki Prefecture

Rina MAMIZUKA, Miho MIURA, Shuji YOSHINO, Hidenari GANMYO, Hirohiko HAMADA

要旨

2016年に県内では全数把握対象85疾患中、24疾患が報告された。疾患別では結核(208例)、つつが虫病(52例)、腸管出血性大腸菌感染症(16例)の報告が多くあった。また、重症熱性血小板減少症候群(SFTS)は県内で9例報告があり、全国で最も報告数が多かった。2011年以来のチクングニア熱の報告が1例あった。

定点把握対象疾患のうちインフルエンザ及び小児科対象疾患については、報告総数が前年と同程度、例年の約0.9倍、全国の約1.5倍であった。眼科及び基幹定点対象疾患の報告総数は、前年の約3.3倍、例年の約2.3倍であり、月報告対象疾患の性感染症の報告総数は、前年と同程度、例年の約0.9倍、全国の約0.6倍であった。薬剤耐性菌感染症の報告総数は、前年の0.9倍、例年の約0.7倍、全国の約0.8倍であった。

キーワード：感染症発生動向調査事業、宮崎県、全数把握、定点把握

はじめに

当研究所では、1994年(平成6年)から感染症発生動向調査事業に基づいて感染症情報の収集と解析を行ってきた。解析した情報は週報や月報にて医療機関や県民に情報提供し、感染症の発生及び拡大の防止並びに公衆衛生の向上に努めている。

今回、本県における2016年(平成28年)の患者発生状況をまとめたので報告する。

調査方法

1. 対象疾患及び定点医療機関

「感染症の予防及び感染症の患者に対する医療に関する法律」で定められた114疾患を対象とした。

指定届出医療機関(以下「定点」という。)は、感染症発生動向調査事業実施要綱に基づき選定した(表1)。

表1 保健所別指定届出医療機関(定点)数

<table>
<thead>
<tr>
<th>保健所名</th>
<th>インフル</th>
<th>小児科</th>
<th>眼科</th>
<th>基幹</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>宮崎市</td>
<td>16</td>
<td>10</td>
<td>4(25)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>都城</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>延岡</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>日南</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>小林</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>高鍋</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>高千穂</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>日向</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>中央</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>59</td>
<td>36</td>
<td>6(5)</td>
<td>7</td>
<td>13</td>
</tr>
</tbody>
</table>

*宮崎市保健所の眼科定点数が40週から2となり、眼科定点数は合計5となった。
結果

1 全数把握対象疾患の発生状況
1）一類感染症
報告はなかった。

2）二類感染症
結核 208 例が報告された。
a）結核 Tuberculosis
報告数は 208 例で、前年（213 例）と同程度であった。このうち、肺結核が 102 例（うち 1 例は感染症死亡疑い者の死体）、その他の結核（結核性胸膜炎、頸部リンパ節結核、粟粒結核等）が 25 例、肺結核及びその他の結核が 10 例、疑似症患者が 9 例並びに無症状病原体保有者が 62 例であった。
宮崎市（11 例）、都城（32 例）、日南（17 例）保健所からの報告が多く、性別では男性が 99 例、女性が 109 例であった。年齢別では 70 歳以上が 120 例と全体の約 6 割を占めており、高齢者の割合が高かった。

3）三類感染症
腸管出血性大腸菌感染症 16 例が報告された。
a）腸管出血性大腸菌感染症
Enterohemorrhagic Escherichia coli infection
報告数は 16 例で、前年（11 例）の約 0.1 倍と少なかった。患者が 6 例、無症状病原体保有者が 10 例であった。O 血清型別では、O26 及び O91 が 4 例ずつ、O1 及び O157 が 2 例ずつ、O103 及び O145 が 1 例ずつ、不明が 2 例であった（表 2）。
宮崎市、高千穂（各 3 例）、都城、高鍋、日向（各 2 例）、延岡、日南、小林、中央（各 1 例）保健所からの報告で、年齢別では 20 歳代が 5 例と多かった。
発生月別では 5 月から 7 月が 10 例と全体の約 6 割を占めた。

4）四類感染症
E 型肝炎 3 例、A 型肝炎 3 例、重症熱性血小板減少症候群（SFTS）9 例、チングニア熱 1 例、つつが虫病 52 例、デング熱 1 例、日本赤斑熱 6 例及びレジオネラ症 1 例が報告された。
a）E 型肝炎 Hepatitis E
報告数は 3 例で、日向（2 例）、宮崎市（1 例）保健所からの報告であった。年齢はいずれも 60 歳代で、主な症状として全身倦怠感、黄疸、肝機能異常、肝腫大がみられた。
b）A 型肝炎 Hepatitis A
報告数は 3 例で、宮崎市（2 例）、日向（1 例）保健所からの報告であった。年齢は 40 歳代、50 歳代及び 60 歳代であった。主な症状として全身倦怠感、発熱、食欲不振、黄疸、肝機能異常がみられた。
c）重症熱性血小板減少症候群
SFTS（severe fever with thrombocytopenia syndrome）
報告数は 9 例で、延岡（5 例）、宮崎市（4 例）保健所からの報告であった。性別では男性が 6 例、女性が 3 例、年齢はいずれも 60 歳代以上であった。主な症状として発熱、下痢、食欲不振、全身倦怠感、自血球・血小板減少、リンパ節腫脹がみられた。患者の発症時期は、7 月から 12 月であった。
d）チングニア熱 Chikungunya fever
報告数は 1 例で、宮崎市保健所からの報告であった。患者はインドへの渡航歴があり、性別は男性、年齢は 30 歳代であった。主な症状として関節痛、発疹、全身倦怠感がみられた。本県では、2011 年以来 2 例目の報告であった。
e）つつが虫病
Scrub typhus（Tsutsugamushi disease）
報告数は 52 例で前年（61 例）の約 0.9 倍であった。患者発生時期は例年どおり冬季で、11 月（23 例）、12 月（22 例）の報告が全体の約 9 割を占めた。
都城（18 例）、小林（12 例）及び宮崎市（10 例）保健所からの報告が多く、性別では男性が 34 例、女性が 18 例、年齢別では 50 歳以上が約 9 割を占めた。
主な症状として頭痛、発熱、刺し口、リンパ節腫脹、発疹がみられた。
f）デング熱 Dengue fever

報告数は1例で，日向保健所からの報告であった。患者はフィリピンへの渡航歴があり，性別は男性，年齢は30歳代であった。主な症状として発熱，頭痛，血小板・白血球減少がみられた。

g）日本赤斑熱 Japanese spotted fever

報告数は6例で，患者の発症時期は5月から10月であった。宮崎市（3例），都城，日南及び小林（各1例）保健所からの報告であった。性別では男性が3例，女性が3例，年齢は20歳代，60歳代，70歳代が各1例ずつ，80歳代が3例であった。主な症状として発熱，頭痛，下痢，DIC，肝機能異常がみられた。

h）レジオネラ症 Legionellosis

報告数は1例で，延岡保健所からの報告であった。病名は肺炎型で，性別は男性，年齢は40歳代であった。主な症状として発熱，咳，肺炎がみられた。

5）五類感染症

アメーバ赤痢 14例，ウイルス性肝炎5例，カルバペネム耐性腸内細菌感染症10例，急性脳炎10例，クイロツフェルト・ヤコブ病1例，劇症型溶血性レンサ球菌感染症2例，後天性免疫不全症候群6例，侵襲性インフルエンザ菌感染症1例，侵襲性肺炎球菌感染症8例，水痘（入院例）3例，梅毒9例，播種性クリプトコックス症5例，破傷風3例及び風しん1例が報告された。

a）アメーバ赤痢 Amebic dysentery

報告数は14例で，病名は腸管アメーバ症が13例，腸管外アメーバ症が1例で，宮崎市（8例），都城（4例）及び延岡（2例）保健所からの報告であった。性別は男性が11例，女性が3例で，年齢は30歳代が5例，40歳代が1例，50歳代が3例，60歳代が5例であった。主な症状として下痢，粘血便，しぐれ腹，腹痛，大腸粘膜異常所見がみられた。

b）ウイルス性肝炎 Viral hepatitis

報告数は5例で，原因病原体はB型肝炎ウイルスが4例，サイトメガロウイルスが1例で，宮崎市（4例），日向（1例）保健所からの報告であった。性別は男性が4例，女性が1例で，年齢は30歳代が3例，40歳代，50歳代が各1例ずつであった。主な症状として全身倦怠感，肝機能異常，黄疸がみられた。

c）カルバペネム耐性腸内細菌感染症

Carbapenem-Resistant Enterobacteriaceae

報告数は1例で，原因病原体はEnterobacter cloacaeが4例，肺炎桿菌が3例，Citrobacter koseriが2例，Enterobacter aerogenesが1例，宮崎市，都城（各4例）及び延岡（2例）保健所からの報告であった。年齢は60歳代が3例，70歳代が4例，80歳代が1例，90歳代が2例で，主な症状は尿路感染症，肺炎，敗血症，胆管炎，肝臓がみられた。

d）急性脳炎 Acute encephalitis

報告数は10例で，原因病原体はインフルエンザウイルスA型が5例，単純ヘルペスウイルスが1例，不明が4例であった。いずれも宮崎市保健所からの報告であった。年齢は0～4歳が5例，5～9歳が2例，10歳代，40歳代，80歳代が各1例ずつであった。主な症状として発熱，頭痛，発疹，意識障害，髄液細胞数の増加がみられた。

e）クロイツフェルト・ヤコブ病 Creutzfeldt-Jakob disease

報告数は1例で，病名は古典型クロイツフェルト・ヤコブ病で，宮崎市保健所からの報告であった。性別は男性，年齢は60歳代であった。主な症状として進行性認知症，ミオクローヌス，錐体路症状，錐体外路症状，発熱，全身倦怠感，DIC，軟部組織炎，精神神経症状がみられた。

f）劇症型溶血性レンサ球菌感染症

Severe invasive streptococcal infections

報告数は2例で，血清群はいずれもA群で，宮崎市保健所からの報告であった。年齢は40歳代及び60歳代であった。主な症状としてショック，腎不全，DIC，軟部組織炎，中枢神経症状がみられた。

g）後天性免疫不全症候群

Acquired immunodeficiency syndrome

報告数は6例であった。病名はAIDSが3例（指標疾患：ニューモノサイト症，カンジダ症及びニューモノサイト症，カンジダ症及びHIV脳症が各1例ずつ），無症候性カリヤが3例で
あった。宮崎市(4例)、日向及び中央(各1例)保健所からの報告で、性別はいずれも男性であった。年齢別では20歳代が3例、30歳代が2例、50歳代が1例で、感染経路は同性間性的接触が3例、異性間性的接触が2例であった。

h）侵襲性インフルエンザ菌感染症

Invasive Haemophilus influenzae infection

報告数は3例で、宮崎市、都城及び延岡(各1例)保健所からの報告で、患者は0～4歳が2例、80歳代が1例であった。主な症状として発熱、肺炎、菌血症がみられた。

i）侵襲性肺炎球菌感染症

Invasive pneumococcal infection

報告数は8例で、宮崎市(3例)、延岡、高鍋(各2例)及び都城(1例)保健所からの報告であった。性別では男性が6例、女性が2例で、年齢別では60歳代以上が全体の半数を占めた。主な症状として頭痛、発熱、咳、全身倦怠感、肺炎、菌血症がみられた。ワクチン接種歴は接種無しで、7例、2回接種が1例であった。

k）水痘(入院例) Chickenpox

報告数は3例で、病型は臨床診断例が1例、検査診断例が2例であった。いずれも宮崎市保健所からの報告で、年齢別では0～4歳が2例、60歳代が1例であった。主な症状として発熱、発疹、急性腎不全、免疫不全がみられた。ワクチン接種歴は接種無しで、2例、不明が1例であった。

1）梅毒 Syphilis

報告数は9例で、病型は早期顕症I期が3例、早期顕症II期及び無症候が各2例ずつ、晚期顕症及び先天梅毒が各1例ずつであった。宮崎市(7例)、延岡及び日向(各1例)保健所からの報告であった。性別では男性が6例、女性が3例で、年齢別では20歳代及び30歳代が各3例ずつと、全体の約7割を占めた。感染経路は異性間性的接触が6例、性的接触(異性間)、同性間不明、母子感染、不明が各1例ずつであった。主な症状として初期硬結、硬性下痢、梅毒性パラ疹がみられた。

m）播種性クリプトコックス症

Disseminated cryptococcosis disease

報告数は5例で、いずれも宮崎市保健所からの報告であった。年齢は60歳代が3例、70歳代及び80歳代が各1例ずつであった。主な症状として頭痛、意識障害、頚部硬直、真菌血症がみられた。

n）破傷風 Tetanus

報告数は3例で、いずれも宮崎市保健所からの報告であった。60歳代が2例、70歳代が1例であった。主な症状として筋肉のこわばり、開口障害、発語障害、嘔下障害がみられた。

o）風しん Rubella

報告数は1例で、病型は検査診断例で、宮崎市保健所からの報告であった。性別は女性で、年齢は30歳代、ワクチン接種歴は1回目があり、2回目は不明であった。主な症状として発疹、発熱がみられた。

2 定点把握対象疾患の発生状況

1）インフルエンザ及び小児科対象疾患

報告総数は61,293人、定点当たりの報告数は1459.4で、前年と同程度、過去5年間の平均値(以下、「例年」という。)の約0.9倍、全国の約1.5倍であった。

各疾患の発生状況の概要は表3、経時的発生状況は図1(のとおり)、その概略を次に示す。

a）インフルエンザ Influenza

2016/2017年シーズンの報告総数は22,462人、定点当たりの報告数は380.7で、前シーズン及び例年の1.1倍、全国の約1.3倍であった。流行の時期は例年通りで、2017年第2週(1月中旬)に定点あたり17.0と流行注意報レベルを超過し、翌週第3週(1月中旬)には定点あたり42.5と流行警報レベル開始基準値を超過した。第4週(1月下旬)で定点あたり59.1と流行のピークを迎えた後、第14週(4月上旬)に終息基準値を下回った。今シーズンの流行の中心となったウイルスはA香港型(AH3)で、AH1pdm09型及びB型による患者も確認された。延岡(456.5)、小林(419.0)、都城(416.4)保健所の順に報告が多く、10歳未満が全体の半数を占めた。

b）R Sウイルス感染症

Respiratory syncytial virus infection

報告総数は2,047人、定点当たりの報告数は56.9で、前年の0.8倍、例年の0.9倍、全国の約
1.7倍であった。延岡(125.3)、日向(107.5)保健所からの報告が多く、年齢別では1歳が最も多く全体の約4割、3歳未満では95%を占めた。

c）咽頭結膜熱 Pharyngconjunctival fever

報告総数は1,096人、定点当たりの報告数は30.4で、前年の約0.8倍、例年の約0.7倍、全国の約1.4倍であった。日南(71.3)、中央(58.0)、延岡(40.8)保健所からの報告が多く、1歳から3歳が59%を占めた。

d）A群溶血性レンサ球菌咽頭炎

Group A streptococcal pharyngitis

報告総数は3,973人、定点当たりの報告数は110.4で、前年、例年及び全国と同程度であった。日南(204.3)、中央(168.0)、宮崎市(131.8)保健所からの報告が多く、4歳から6歳が全体の44%を占めた。

e）感染性胃腸炎 Infectious gastroenteritis

報告総数は19,094人、定点当たりの報告数は530.4で、前年と同等、例年の約0.9倍、全国の約1.5倍であった。小林(985.0)、日南(895.7)、中央(569.0)保健所からの報告が多く、1歳から4歳が全体の49%を占めた。

f）水痘 Chickenpox

報告総数は808人、定点当たりの報告数は22.4で、前年の約0.6倍、例年の約0.2倍、全国の約1.1倍であった。延岡(45.3)、中央(25.0)、宮崎市(24.0)保健所からの報告が多く、1歳から5歳が全体の約64%を占めた。

g）手足口病 Hand, foot and mouth disease

報告総数は2,373人、定点当たりの報告数は65.9で、前年の約0.4倍、例年の約0.6倍、全国の約3.0倍であった。日南(127.3)、日向(89.8)、延岡(89.0)保健所からの報告が多く、年齢別では1歳から2歳が全体の約57%を占めた。

h）伝染性紅斑 Erythema infectiosum

報告総数は1,661人、定点当たりの報告数は46.1で、前年の約3.1倍、例年の約2.3倍、全国の約2.8倍であった。小林(79.3)、高鍋(59.5)、宮崎市(50.0)保健所からの報告が多く、4歳から6歳が全体の49%を占めた。

i）急性出血性結膜炎 Exanthem subitum

報告総数は1,671人、定点当たりの報告数は46.4で、前年及び例年の約0.9倍、全国の約1.9倍であった。延岡(61.5)、日南(55.3)、中央(51.0)保健所からの報告が多く、6ヶ月から1歳が全体の92%を占めた。

j）百日咳 Pertussis

報告総数は18人、定点当たりの報告数は0.50で、前年及び例年の約1.1倍、全国の約0.5倍であった。日向、中央(各1.0)、都城(0.83)保健所からの報告が多く、5歳未満が全体の61%を占めた。

k）ヘルパンギーナ Herpangina

報告総数は1,761人、定点当たりの報告数は48.9で、前年の約0.8倍、例年の約0.7倍、全国の約1.2倍であった。日南(102.7)、延岡(68.0)、中央(65.0)保健所からの報告が多く、1歳から2歳が全体の61%を占めた。

1）流行性下腺炎 Mumps

報告総数は4,329人、定点当たりの報告数は120.3で、前年の約4.1倍、例年の約2.8倍、全国の約2.4倍であった。小林(319.3)、延岡(286.8)、日向(269.8)保健所からの報告が多く、3歳から6歳が全体の60%を占めた。

2）眼科及び基幹定点報告疾患

眼科定点把握対象疾患の報告総数は934人、定点当たりの報告数は162.1で、前年の約1.1倍、例年の約1.3倍、全国の約4.2倍であった。

基幹定点把握対象疾患の報告総数は421人、定点当たりの報告数は60.1で、前年の約4.8倍、例年の約3.6倍、全国の約1.1倍であった。

a）急性出血性結膜炎

Acute hemorrhagic conjunctivitis

報告総数は8人、定点当たりの報告数は1.3であった。前年の1.6倍、例年の2.3倍、全国の2.3倍であった。年齢は0～4歳が1例、20歳代、30歳代、50歳代が各2例ずつ、60歳代が1例であった。

b）流行性角結膜炎

Epidemic keratoconjunctivitis

報告総数は926人、定点当たりの報告数は160.7で、前年の約1.1倍、例年の1.3倍、全国の約4.3倍と多かった。年齢別では10歳未満が全体の31%、30歳代が19%を占めた。
c）細菌性髄膜炎 Bacterial meningitis
報告総数は 2 人、定点当たりの報告数は 0.29 倍、前年の 2.0 倍、例年の 0.7 倍、全国の約 0.3 倍であった。年齢は 1 回 45 歳で、原因菌は Mycoplasma pneumoniae が 1 人、肺炎球菌が 1 人であった。

d）無菌性髄膜炎 Aseptic meningitis
報告総数は 29 人、定点当たりの報告数は 4.1 倍、前年の 2.1 倍、例年の約 1.5 倍、全国の約 1.4 倍であった。年齢では 0 歳が最も多く全体の 21%、10 歳未満が全体の 90% を占めた。原因病原体は Respiratory syncytial virus が 11 人、Mumps virus が 2 人、Mycoplasma pneumoniae が 2 人、不明が 14 人であった。

e）マイコプラズマ肺炎
Mycoplasma pneumonia
報告総数は 306 人、定点当たりの報告数は 43.7 倍、前年の 8.5 倍、年齢の約 6.4 倍、全国の約 1.1 倍であった。宮崎市(147.0）、高鍋(62.0）、延岡(45.0）保健所からの報告が多く、10 歳未満が全体の 72% を占めた。

f）クラミジア肺炎 Chlamydial pneumonia
報告はなかった。

g）感染性胃腸炎（ロタウイルスに限る）
Infectious gastroenteritis (only by Rotavirus)
報告総数は 84 人、定点当たりの報告数は 12.0 倍、前年の 2.4 倍、全国の約 1.1 倍であった。宮崎市(28.0）、高鍋(26.0）、日南(17.0）保健所からの報告が多く、1 回 4 歳が全体の 71% を占めた。

3）月報告対象疾患

性感染症の報告総数は 397 人、定点当たりの報告数は 30.5 倍、前年と同程度、例年の約 0.9 倍、全国の約 0.6 倍であった。

薬剤耐性細菌感染症の報告総数は 225 人、定点当たりの報告数は 32.1 倍、前年の 0.9 倍、例年の約 0.7 倍、全国の約 0.8 倍であった。

a）性器クラミジア感染症
Genital chlamydial infection
報告総数は 242 人、定点当たりの報告数は 18.6 倍、前年の 0.9 倍、例年の約 0.9 倍、全国の約 0.8 倍であった。都城(36.5）保健所からの報告が多く、男女比が約 1 : 1 で、年齢別では 20 歳代から 30 歳代が全体の 74% を占めた。

b）性器ヘルペスウイルス感染症
Genital herpetic infection
報告総数は 42 人、定点当たりの報告数は 3.2 倍、前年の約 0.9 倍、例年の約 0.7 倍、全国の約 0.4 倍であった。宮崎市(5.3）保健所からの報告が多く、男性が約 2 倍、女性が約 8 倍で、年齢別では 20 歳代から 30 歳代が全体の 67% を占めた。

c）尖圭コンジローマ Condyloma acuminatum
報告総数は 34 人、定点当たりの報告数は 2.6 倍、前年の 1.7 倍、例年の約 1.5 倍、全国の約 0.5 倍であった。宮崎市(6.5）保健所からの報告が多く、男性が約 6 倍、女性が約 4 倍で、20 歳代が全体の 32% を占めた。

d）淋菌感染症 Gonorrhea
報告総数は 79 人、定点当たりの報告数は 6.1 倍、前年の約 1.1 倍、例年の約 0.9 倍、全国の約 0.7 倍であった。日南(15.0）保健所からの報告が多く、男性が約 8 倍、女性が約 2 倍で、20 歳代から 30 歳代が全体の 67% を占めた。

e）メチシリン耐性黄色ブドウ球菌感染症
Methicillin-resistant Staphylococcus aureus infection
報告総数は 218 人、定点当たりの報告数は 31.1 倍、前年の約 0.9 倍、例年の約 0.7 倍、全国の約 0.9 倍であった。70 歳以上が全体の 60% を占めた。

f）ペニシリン耐性肺炎球菌感染症
Penicillin-resistant Streptococcus pneumoniae infection
報告総数は 7 人、定点当たりの報告数は 1.0 倍、前年の約 0.9 倍、例年の約 0.3 倍、全国の約 0.2 倍であった。0 歳が全体の 29% を占めた。

g）薬剤耐性緑膿菌感染症
Multidrug-resistant Pseudomonas aeruginosa infection
報告はなかった。

まとめと考察

全数把握対象疾患のうち、結核は県内全域から、0 歳から 101 歳まで幅広い年齢層で報告された。
特に70歳以上の高齢者が全体の約6割を占め、例年通りの傾向であった。重症熱性小板減少症候群は県内で例報告があり、全国で最も報告数が多くかった。また、チクングニア熱は海外での感染例で、年数把握対象に追加された2011年以来2例目の報告であった。

定点把握疾患のインフルエンザ及び小児科対象の定点把握疾患のうち、そのほとんどの報告数を占める伝染性紅斑は、前年と同程度、例年の約0.9倍、全国の約1.5倍であった。特に、伝染性紅斑の定点当たりの報告数は前年の約3.1倍、例年の約2.3倍、全国の約2.8倍、流行性下肺炎の定点当たりの報告数は前年の約4.1倍、例年の約2.8倍、全国の約2.4倍と流行の年であった。伝染性紅斑は2015年に全国の累積報告数が過去10年間で最多となり、関東地方から全国への伝播状況がみられた。

眼科定点把握対象疾患のうち、そのほとんどは報告数を占める流行性角結膜炎は、前年の約1.1倍、例年の約1.3倍、全国の約4.3倍と多かった。

基幹定点報告疾患は前年の約4.8倍、例年の約3.6倍と多く、全国の約1.1倍と多かった。報告数が増加した背景には、マイコプラズマ肺炎が全国的に流行し、報告数が前年及び例年を大きく上回ったこと、感染性胃腸炎(ロタウイルスが原因のものに限る)も前年を上まわっていたことが原因と考えられた。

月報告対象疾患の性感染症の報告総数は前年とほぼ同程度で、例年及び全国より少なかった。尖圭コンジローマは前年及び例年を上まわっていた。

報告数が増加した背景には、マイコプラズマ肺炎が全圏域で流行し、報告数が前年及び例年を大きく上回ったこと、感染性胃腸炎(ロタウイルスが原因のものに限る)も前年を上まわっていたことが原因と考えられた。

眼科定点把握対象疾患のうち、そのほとんどは報告数を占める流行性角結膜炎は、前年の約1.1倍、例年の約1.3倍、全国の約4.3倍と多かった。

基幹定点報告疾患は前年の約4.8倍、例年の約3.6倍と多く、全国の約1.1倍と多かった。報告数が増加した背景には、マイコプラズマ肺炎が全国的に流行し、報告数が前年及び例年を大きく上回ったこと、感染性胃腸炎(ロタウイルスが原因のものに限る)も前年を上まわっていたことが原因と考えられた。

月報告対象疾患の性感染症の報告総数は前年とほぼ同程度で、例年及び全国より少なかった。尖圭コンジローマは前年及び例年を上まわっていた。

報告数が増加した背景には、マイコプラズマ肺炎が全圏域で流行し、報告数が前年及び例年を大きく上回ったこと、感染性胃腸炎(ロタウイルスが原因のものに限る)も前年を上まわっていたことが原因と考えられた。

月報告対象疾患の性感染症の報告総数は前年とほぼ同程度で、例年及び全国より少なかった。尖圭コンジローマは前年及び例年を上まわっていた。
図1 定点把握対象疾患（週報告対象）の定点あたり報告数の週推移（経時発生状況）
表3 定点把握対象疾患の発生状況の概要（宮崎県、2016年）

<table>
<thead>
<tr>
<th>疾患名</th>
<th>報告総数</th>
<th>年齢群別報告数の割合</th>
<th>市民1万人あたり報告数</th>
<th>報告総数に占める割合</th>
<th>年齢群</th>
<th>発症年齢群</th>
<th>昨年比（県内2015年）</th>
<th>過去5年間の平均との比</th>
<th>全国比（2016年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>インフルエンザ</td>
<td>22462</td>
<td></td>
<td></td>
<td></td>
<td>10歳未満</td>
<td>50</td>
<td>110</td>
<td>108</td>
<td>131</td>
</tr>
<tr>
<td>RSウイルス感染症</td>
<td>2047</td>
<td></td>
<td></td>
<td></td>
<td>3歳未満</td>
<td>95</td>
<td>80</td>
<td>90</td>
<td>171</td>
</tr>
<tr>
<td>咽頭結膜熱</td>
<td>1096</td>
<td></td>
<td></td>
<td></td>
<td>1歳〜3歳</td>
<td>59</td>
<td>81</td>
<td>65</td>
<td>142</td>
</tr>
<tr>
<td>A群溶血性レッサン球菌咽頭炎</td>
<td>3973</td>
<td></td>
<td></td>
<td></td>
<td>4歳〜6歳</td>
<td>44</td>
<td>97</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>感染性胃腸炎</td>
<td>19094</td>
<td></td>
<td></td>
<td></td>
<td>1歳〜4歳</td>
<td>49</td>
<td>104</td>
<td>94</td>
<td>150</td>
</tr>
<tr>
<td>水痘</td>
<td>808</td>
<td></td>
<td></td>
<td></td>
<td>1歳〜5歳</td>
<td>64</td>
<td>59</td>
<td>23</td>
<td>108</td>
</tr>
<tr>
<td>手足口病</td>
<td>2373</td>
<td></td>
<td></td>
<td></td>
<td>1歳〜2歳</td>
<td>57</td>
<td>41</td>
<td>56</td>
<td>301</td>
</tr>
<tr>
<td>伝染性紅斑</td>
<td>1661</td>
<td></td>
<td></td>
<td></td>
<td>4歳〜6歳</td>
<td>49</td>
<td>306</td>
<td>234</td>
<td>283</td>
</tr>
<tr>
<td>突発性発しん症</td>
<td>1671</td>
<td></td>
<td></td>
<td></td>
<td>6ヶ月〜1歳</td>
<td>92</td>
<td>90</td>
<td>85</td>
<td>192</td>
</tr>
<tr>
<td>百日咳</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>5歳未満</td>
<td>61</td>
<td>113</td>
<td>105</td>
<td>53</td>
</tr>
<tr>
<td>ヘルパンギーナ</td>
<td>1761</td>
<td></td>
<td></td>
<td></td>
<td>1歳〜2歳</td>
<td>61</td>
<td>84</td>
<td>73</td>
<td>119</td>
</tr>
<tr>
<td>流行性耳下腺炎</td>
<td>4329</td>
<td></td>
<td></td>
<td></td>
<td>3歳〜6歳</td>
<td>60</td>
<td>414</td>
<td>279</td>
<td>239</td>
</tr>
<tr>
<td>急性出血性結膜炎</td>
<td>8</td>
<td>1.3</td>
<td>20歳未満〜30歳代</td>
<td>50</td>
<td>160</td>
<td>230</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流行性角結膜炎</td>
<td>926</td>
<td>16.0</td>
<td>10歳未満</td>
<td>31</td>
<td>105</td>
<td>127</td>
<td>426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>細菌性髄膜炎</td>
<td>2</td>
<td>0.3</td>
<td>1〜4歳, 60歳代</td>
<td>100</td>
<td>200</td>
<td>70</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>無菌性髄膜炎</td>
<td>29</td>
<td>4.1</td>
<td>10歳未満</td>
<td>90</td>
<td>207</td>
<td>153</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マイコプラズマ肺炎</td>
<td>306</td>
<td>43.7</td>
<td>10歳未満</td>
<td>72</td>
<td>850</td>
<td>639</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>クラミジア肺炎</td>
<td>0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>感染性胃腸炎（ロタウイルスに限る）</td>
<td>84</td>
<td>12.0</td>
<td>1歳〜4歳</td>
<td>71</td>
<td>240</td>
<td>-</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>性器クラミジア感染症</td>
<td>242</td>
<td>18.6</td>
<td>20歳未満〜30歳代</td>
<td>74</td>
<td>90</td>
<td>87</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>性器ヘルパンギーナ感染症</td>
<td>42</td>
<td>3.2</td>
<td>20歳未満〜30歳代</td>
<td>67</td>
<td>89</td>
<td>71</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>尖圭コンジローマ</td>
<td>34</td>
<td>2.6</td>
<td>20歳代</td>
<td>32</td>
<td>170</td>
<td>147</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>淋菌感染症</td>
<td>79</td>
<td>6.1</td>
<td>20歳未満〜30歳代</td>
<td>67</td>
<td>108</td>
<td>89</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>メチシリン耐性黄色ブドウ球菌感染症</td>
<td>218</td>
<td>31.1</td>
<td>70歳以上</td>
<td>60</td>
<td>91</td>
<td>70</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ペニシリン耐性肺炎球菌感染症</td>
<td>7</td>
<td>1.0</td>
<td>0歳</td>
<td>29</td>
<td>88</td>
<td>27</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ペニシリン耐性緑膿菌感染症</td>
<td>0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
宮崎県の感染症発生動向調査事業におけるウイルス検出報告（2016年）

三浦美穂 有馬栞莉 井上志穂 野町太朗 元明秀成 馬見塚理奈

Miho MIURA, Shio ARIMA, Shiho INOUE, Taro NOMACHI, Hidenari GANMYO, Rina MAMIZUKA

要旨

2016年に県内の医療機関より感染症発生動向調査の検体が596件搬入され，308件のウイルスが分離・検出された。2016/2017シーズンに検出されたインフルエンザウイルスは，AH1pdm09が9件，AH3亜型が85件，B型が32件の計126件であった。

2016年は，4月から8月にパレコウイルス3型が検出され，春を中心にエコーウイルス18型が検出された。また，ほぼ1年を通してヒトライノウイルスが検出され，7月～12月にコクサッキーウイルスA16型が検出された。

キーワード：インフルエンザウイルス，パレコウイルス3型，エコーウイルス18型

はじめに

本県では1981年7月から感染症発生動向調査事業を開始し，感染症の発生状況の正確な把握と解析を行い，その結果を速やかに県民や医療関係者に提供・公表するなど，感染症の発生及び延の防止に努めている。当研究所は，感染症発生動向調査事業実施要領に基づき搬入された検体について，ウイルスの検索を行っており，2016年の病原体検出状況を取りまとめたので報告する。

材料と方法

2016年1月～12月にウイルスの検索を目的として搬入された596検体を検査材料とした。

1 分離材料
1）髄液，血しょう及び血清は検体をそのままウイルスの分離に用いた。
2）咽頭ぬぐい液，鼻汁，眼瞼結膜ぬぐい液，水疱液及び気管内吸引液は，細胞培養用維持培地（1%牛胎児血清加Eagle’s MEM（日製製薬）にペニシリン及びストレプトマイシンをそれぞれ100単位，100γ/mLの割合で加えたもの）に浮遊させ3,000rpm 10分間遠心した上清を分離材料とした。
3）尿は1,500rpm 10分間遠心した沈渣細胞を，2～3mLの細胞培養用維持培地中再浮遊させたものを用いた。
4）便は，細胞培養用維持培地で10%乳剤とした後，3,000rpm 20分間遠心し，遠心上清をさらに12,000rpm 10分間遠心した後フィルター（ボアサイズ0.45μm）を通し，分離材料とした。
なお，検体は接種時まで－80℃で保存した。

2細胞
Caco-2，Vero，HEp-2，RD-18S及びRD-A細胞の5種類を常時用い，麻疹が疑われる場合にはVero/hSLAM細胞を，インフルエンザウイルスが疑われる場合にはMDCK細胞をそれぞれ併用した。
3 分離
細胞培養によるウイルス分離は 96 穴マイクロプレート法で行った。単層培養した Caco-2、Vero、HEp-2、RD-18S 及び RD-A 細胞に検体を 1 穴あたり 30 μL ずつ接種して 35°C 約 30 分間吸着後、維持培地を 100 μL ずつ加え、CO₂インキュベーターで 1 週間培養した。1 週間培養しても細胞変性効果（CPE）が出現しなかった検体については、3 回凍結融解を行い、新しい細胞に継代した。4 代継代しても CPE が出現しなかったものはウイルス分離陰性とした。

CPE が出現した検体については、3 回凍結融解後、3,000rpm 10 分間遠心した上清をウイルス液として同定を行った。

同定および検出
分離ウイルスの同定は、中和試験、直接蛍光抗体法及び遺伝子検査で行った。

インフルエンザウイルスについては、国立感染症研究所のインフルエンザ診断マニュアル（平成 24 年 3 月）に従い、リアルタイム RT-PCR 法で型別を行った。
ノロウイルスについては、ノロウイルスの検出法（平成 15 年 11 月 5 日付食安監発第 1105001 号）に従い、リアルタイム PCR 法で検査を行った。
サポウイルスについては、岡らの報告に従い、リアルタイム PCR 法で検査を行った。
エンテロウイルスの遺伝子検査は、古原らの報告に従い、リアルタイム PCR 法で行った。

パレコウイルスについては、吉冨らの報告に従い、リアルタイム PCR 法で行った。
ヒト RS 細胞、ヒトメタニューモウイルス、ヒトライノウイルス、パラインフルエンザウイルス 1 型〜4 型、ヒトコロナウイルス OC43 及び 229E の 9 種類の呼吸器 RNA 細胞の遺伝子検査は、Bellau-Pujol らの方法を参考に、multiplex RT-PCR 法で行った。

ヘルペスウイルスについては、VanDevanter らの方法を参考に、nested PCR 法で行った。

分離・検出されたウイルスの一部については、ライフサイクエンス診断法で塩基配列を決定し、日本 DNA データバンク（DDBJ）の BLAST を用いて相同性検索を行い、CLUSTAL W 又は MEGA を用いて系統樹解析を実施した。

結果および考察
搬入された 596 検体について検査した結果、308 件のウイルスが分離・検出され、このうちインフルエンザウイルスが最も多く、次いでパレコウイルス 3 型、エコーウイルス 18 型、ライノウイルス及びコクサッキーウイルス A16 型が多かった（表 1）。

1 インフルエンザウイルス
インフルエンザウイルスについては、流行期間の関係で 2016/2017 シーズンについて解析を行った。

定点あたり患者報告数とウイルス検出数の推移を図 1 に示す。患者報告数は、2016 年第 50 週（12 月中旬）から増え始め、2017 年第 2 週（1 月中旬）に流行発生注意報基準値（10.0）を超え、第 4 週（1 月下旬）にピークとなった。その後、第 14 週（4 月上旬）には注意報基準値未満となった。

2016 年 9 月から 2017 年 6 月までに分離・検出されたインフルエンザウイルスは AH1pdm09 が 9 件、AH3 亜型が 85 件、B 型が 32 件の計 126 件であった。B 型は山形系統が 18 件、バクサリー系統が 14 件であった。

2 パレコウイルス 3 型
春から夏にかけてパレコウイルス 3 型が 23 例 29 件検出された。23 例のうち 13 例が発疹性疾患、4 例 7 件が不明熱、2 例 3 件が流行性筋痛症であった。他は、顔面神経炎、2 例 2 件、脳症 1 例 2 件、感染性胃腸炎 1 例、心筋炎 1 例で、感染性胃腸炎はノロウイルス G II との重複感染であった。年齢は、0 歳 10 例及び 1 歳 8 例が多く、2 歳 2 例、3 歳 1 例、20 歳代 1 例、30 歳代 1 例であった。20 歳代及び 30 歳代の 2 例は流行性筋痛症であった。
图 1 インフルエンザのウイルス分離・検出数と定点あたり患者報告数の推移

3 エコーウイルス 18 型
4 月をピークにエコーウイルス 18 型が 27 例 29 件分離・検出された。本県では 2013 年に 35 件、2015 年に 3 件分離・検出されており、3 年ぶりの流行であった。27 例のうち 19 例が発熱性疾患であった。ほかは手足口病 2 例、髄膜炎 2 例、上気道炎 2 例、不明熱 1 例 2 件、ヘルペス口内炎 1 例であった。また、2 例はエコーウイルス 16 型及びラインウイルスとの重複感染であった。年齢は、1 歳 12 例、0 歳 10 例、2 歳 3 例、4 歳 1 例、10 歳代 1 例であった。

4 ヒトライノウイルス
1 年を通してヒトライノウイルスが検出された。検出された 29 例のうち 23 例に上気道炎の呼吸器症状があった。残りの 6 例は脳炎・髄症 2 例、伝染性紅斑 1 例、麻疹疑い 1 例、不明熱 1 例、ジラノバセ症候群 1 例で、呼吸器症状の記載はなかった。また、5 例はパラインフルエンザウイルス、エコーウイルス 18 型及びパルボウイルス B19 との重複感染であった。年齢は、0 歳が 15 例と最も多く、1 歳 6 例、2 歳 2 例、5 歳 2 例、3 歳 1 例、7 歳 1 例、10 歳代 1 例、30 歳代 1 例であった。

5 コクサッキーウイルス A16 型
7 月から 12 月にコクサッキーウイルス A16 型が 22 例分離・検出された。過去には、2011 年に 14 例検出されており、5 年ぶりの流行であった。22 例のうち手足口病が 15 例と最も多く、ほかはヘルペス口内炎 3 例、発熱性疾患 1 例、髄症 1 例、不明熱 1 例、感染性胃腸炎 1 例であった。年齢は、1 歳が 8 例と多く、0 歳 4 例、2 歳 4 例、4 歳 2 例、5 歳 2 例、3 歳 1 例、10 歳代 1 例であった。

謝辞
2016 年の感染症発生動向調査事業において検査材料を提供してくださった、感染症発生動向調査事業定点医療機関並びに検体採取にご協力いただいた医療機関の先生方に深謝いたします。

参考文献
1) 篠原美千代，内田和江，鳥田慎一，後藤敦：コクサッキーウイルスA16型及びエンテロウイルス71型の検査法の検討，感染症学雑誌，73(8)，749-757，(1999)

2) 吉冨秀亮，石橋哲也，世良暢之：福岡県におけるヒトパレコウイルス検出状況，福岡県保康環境研究所年報第39号，99-100，(2012)

4) VanDevanter et al.：Detection and Analysis of Diverse Herpesviral Species by Consensus Primer PCR，Journal of Clinical Microbiology，34 (7)，1666-1671，(1996)

表1 宮崎県における月別ウイルス検出数（2016年）

<table>
<thead>
<tr>
<th>ウイルス名</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus 2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Adenovirus 3</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Adenovirus 5</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Adenovirus 31</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Adenovirus NT</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Coxsackievirus A5</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Coxsackievirus A6</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Coxsackievirus A16</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Coxsackievirus B5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Echovirus 6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Echovirus 9</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Echovirus 16</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Echovirus 18</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Echovirus 25</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Parechovirus 1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Parechovirus 3</td>
<td>1</td>
<td>5</td>
<td>17</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>29</td>
<td>114</td>
</tr>
<tr>
<td>Varicella-zoster virus</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Human herpes virus 6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Human herpes virus 7</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Parvovirus B19</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Influenza virus A H1pdm09</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Influenza virus A H3</td>
<td>1</td>
<td></td>
<td>3</td>
<td>13</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Influenza virus B</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Parainfluenza virus 1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Parainfluenza virus 3</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>RS virus</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mumps virus</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Norovirus G2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Dengue virus 3</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chikungunya virus</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>18</td>
<td>15</td>
<td>28</td>
<td>22</td>
<td>34</td>
<td>33</td>
<td>40</td>
<td>21</td>
<td>24</td>
<td>20</td>
<td>29</td>
<td>308</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 4</td>
<td>2</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 31</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus 41</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus NT</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>11</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 6</td>
<td>2</td>
<td>1</td>
<td>38</td>
<td>12</td>
<td>15</td>
<td>31</td>
<td>5</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 8</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 9</td>
<td>8</td>
<td>23</td>
<td>25</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 10</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 14</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus A 16</td>
<td>12</td>
<td>2</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>22</td>
<td>60</td>
<td></td>
<td></td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 3</td>
<td>7</td>
<td>16</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 5</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 6</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 9</td>
<td>9</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 14</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 16</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 18</td>
<td>6</td>
<td>35</td>
<td>3</td>
<td>29</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 19</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 25</td>
<td>2</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echovirus 30</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parechovirus 1</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parechovirus 3</td>
<td>5</td>
<td>29</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poliovirus 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poliovirus 2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poliovirus 3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterovirus D68</td>
<td>6</td>
<td>14</td>
<td>3</td>
<td>15</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterovirus 71</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Enterovirus</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>2</td>
<td>12</td>
<td>14</td>
<td>10</td>
<td>32</td>
<td>32</td>
<td>29</td>
<td>131</td>
<td></td>
<td></td>
<td>318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpes simplex virus 1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varicella-zoster virus</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human herpes virus 6</td>
<td>13</td>
<td>8</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human herpes virus 7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitus A Virus</td>
<td>1</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis C Virus</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvovirus B19</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza virus A H1pdm09</td>
<td>49</td>
<td>52</td>
<td>55</td>
<td>51</td>
<td>20</td>
<td>1</td>
<td>28</td>
<td>648</td>
<td></td>
<td></td>
<td>741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza virus A H1</td>
<td>23</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza virus A H3</td>
<td>18</td>
<td>9</td>
<td>45</td>
<td>60</td>
<td>41</td>
<td>90</td>
<td>32</td>
<td>47</td>
<td>25</td>
<td>17</td>
<td>384</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza virus B</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>27</td>
<td>1</td>
<td>20</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramyxovirus 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramyxovirus 2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramyxovirus 3</td>
<td>5</td>
<td>3</td>
<td>13</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS virus</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>21</td>
<td>30</td>
<td>18</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>29</td>
<td>4</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human corona virus</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measles virus</td>
<td>8</td>
<td>1</td>
<td>19</td>
<td>10</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mumps virus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubella virus</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norovirus</td>
<td>21</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapovirus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue virus 1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue virus 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue virus 3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chikungunya virus</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthomyxovirus</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>108</td>
<td>122</td>
<td>650</td>
<td>177</td>
<td>236</td>
<td>223</td>
<td>180</td>
<td>249</td>
<td>278</td>
<td>308</td>
<td>2529</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
乳糖分解性を指標とした下痢原性大腸菌の解析

水流奈己 吉野修司 荒井路子 元明秀成

Analysis of Diarrheagenic Escherichia coli utilizing fermentation of lactose

Nami TSURU, Shuji YOSHINO, Michiko ARAI, Hidenari GANMYO

要旨

腸管出血性大腸菌以外の下痢原性大腸菌について、乳糖分解性を利用して鑑別できるか検討した。乳糖の分解性は、血清型や病原因子による分類で偏りが見られたが、下痢原性大腸菌を分類する明るかなる指標とはならなかった。しかし、検討に用いた菌株中に、病原因子を持つEscherichia albertiiとEscherichia fergusoniiが含まれていることが明らかとなり、乳糖分解性は大腸菌と大腸菌類縁菌の鑑別には有効である可能性が示唆された。

キーワード 下痢原性大腸菌、乳糖分解性、E.albertii, E.fergusonii

はじめに

大腸菌の中では下痢を起こすのは下痢原性大腸菌と総称され、病原因子などの違いにより腸管出血性大腸菌 (enterohemorrhagic Escherichia coli : EHEC), 腸管侵入性大腸菌 (enteroinvasive Escherichia coli : EIEC), 腸管毒素原性大腸菌 (enterotoxigenic Escherichia coli : ETEC), 腸管病原因性大腸菌 (enteropathogenic Escherichia coli : EPEC), 腸管凝集付着性大腸菌 (enteroaggregative Escherichia coli: EAggEC, EAEC) の5種類に分類されている。また、これらに準ずる病原因子やマーカーとして、afaやastA, CDT, cnfなども知られており、食中毒など多数の患者から同一の病原因子を持つ菌株が検出された場合には、下痢症の起因菌である可能性が高いと考えられている。これらのうちEHECは、選択分離培地やベロ毒素検出用の簡易キットが市販されており、比較的容易に検出が可能である。しかし、その他の下痢原性大腸菌は遺伝子検査による病原因子の検出が必要なため、市中病院などでは見落とされていることもある。EIECは、腸管凝集性を示す病原因子EalC13（EalC）を持つが、EHECの腸管出血性病原性を示す病原因子EalC13（EalC）を持つことを示す。

今回は、乳糖分解性を指標として、培地で下痢原性大腸菌が鑑別できないか検討したので報告する。

また、下痢原性大腸菌の検討を行う中で、下痢原性大腸菌と同じ病原因子をもつ大腸菌類縁菌を検出したので併せて報告する。

方法

1 材料
1992年〜2015年3月に分離されたEHEC以外の下痢原性大腸菌保存株（以下、下痢原性株）672株、EHEC O111保存株126株を用いた。

2 乳糖分解性的確認
下痢原性株をマッコンキー寒天培地に37℃、1晩培養し、乳糖分解性のスクリーニングを行った。コロニーが変色しなかった株は、さらにアンドレイド培地を用いて30日間培養し、30日まで分解しないものを非分解性、2日〜30日までに分解したものを遅分解性とした。乳糖分解性、遅分解性株はそれぞれ血清型、病原因子による分類を行い、血清型に偏りがみられた場合には、同じ血清型のEHEC株について、乳糖分解性を確認し比較を行った。

3 乳糖分解酵素（βガラクトシダーゼ）および遺伝子の検出
乳糖非分解性・遅分解性株はONPG試験を行ったが、乳糖透過に関わるガラクトシダーゼをコードするlacZ1、乳糖の膜透過に関わるガラクトシダーゼおよび乳糖透過に関わるlacY2のPCR法により検出した。

4 大腸菌類縁菌の検出
ONPG試験（+）・lacZ（-）・lacY（-）の株は、生化学性状試験、大腸菌類縁菌のE.albertii, E.fergusoniiを検出するPCR法を行った。

微生物部
結果

1 乳糖非分解性株の検出と分類（表1・2）
下痢原因株672株中、乳糖非分解性株は22株（3.3％）、乳糖遅分解性株は24株（3.6％）であった。血清型による分類では、乳糖非分解性株22株のうち、O111が12株（54.5％）と最も多く、いずれも病原株としてaggRが検出された。乳糖遅分解性株24株では、O86aが14株（58.3％）と最も多く、病原因子が複数検出された。また、比較に用いたEHEC O111については、すべて乳糖分解性であった。なお、血清型O86aは、EHECが分離されておらず、比較できなかった。

表1 乳糖非分解性・遅分解性株の分類

<table>
<thead>
<tr>
<th>乳糖分解性</th>
<th>血清型</th>
<th>病原因子</th>
<th>検出数</th>
</tr>
</thead>
<tbody>
<tr>
<td>非分解</td>
<td>O111</td>
<td>aggR</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>O26</td>
<td>eae</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>eae・astA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O55</td>
<td>eae</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>eae・astA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O119</td>
<td>astA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>STp</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>astA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eae</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O86a</td>
<td>aggR</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>afaD</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eae</td>
<td>2</td>
</tr>
<tr>
<td>遅分解</td>
<td>O111</td>
<td>aggR・astA</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>O55</td>
<td>aggR</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O119</td>
<td>aggR・astA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O6</td>
<td>astA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O26</td>
<td>astA</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>O127a</td>
<td>STp</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>LT</td>
<td>1</td>
</tr>
</tbody>
</table>

2 乳糖分解酵素および遺伝子の検出（表3）
乳糖非分解性株のうち、ONPG試験（－）・lacZ（－）・lacY（－）が19株、ONPG試験（－）・lacZ（＋）・lacY（－）が2株、ONPG試験（＋）・lacZ（－）・lacY（－）が1株であった。乳糖遅分解性株のうち、ONPG試験（＋）・lacZ（＋）・lacY（＋）が20株、ONPG試験（＋）・lacZ（＋）・lacY（－）が3株、ONPG試験（＋）・lacZ（－）・lacY（－）が1株であった。

表3 βガラクトシダーゼ及び遺伝子の検出

<table>
<thead>
<tr>
<th>乳糖分解性</th>
<th>ONPG</th>
<th>lacZ</th>
<th>lacY</th>
<th>検出数</th>
</tr>
</thead>
<tbody>
<tr>
<td>非分解</td>
<td>－</td>
<td>－</td>
<td>＋</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>－</td>
<td>＋</td>
<td>＋</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>－</td>
<td>－</td>
<td>－</td>
<td>1</td>
</tr>
<tr>
<td>遅分解</td>
<td>＋</td>
<td>＋</td>
<td>＋</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>＋</td>
<td>－</td>
<td>－</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>＋</td>
<td>－</td>
<td>－</td>
<td>1</td>
</tr>
</tbody>
</table>

3 大腸菌類縁菌の検出
ONPG試験（＋）lacZ（－）・lacY（－）の2株は、生化学性状試験による確認を行った（表4）。さらに、PCRによる大腸菌類縁菌の検出を行った結果、乳糖非分解性株はeaeを保有するE.albertii、乳糖遅分解性株はLTを保有するE.fergusoniiと同定された。

考察

下痢原因株のうち、乳糖非分解性株はEAggEC O111が最も多く傾向がみられた。しかし、乳糖分解性株も37株あり、乳糖分解性を指標としたEAggEC O111の鑑別は難しいと考えられた。なお、血清型O111は、EHECにも多く検出されるが、EHEC O111はすべて乳糖分解性であった。このことから、乳糖非分解性の大腸菌O111を分離した場合は、EAggECを優先的に考慮した方が良いことが示唆された。

乳糖分解酵素及び遺伝子の検出では、いくつかの株で酵素の発現と遺伝子の検出結果に矛盾がみられた。それらのうち、ONPG試験（－）・lacZ（＋）・lacY（＋）やONPG試験（＋）・lacZ（＋）・lacY（－）の株については、βガラクトシダーゼやガラクトシダーゼをコードする遺伝子は持つもののタンパクとして発現していない株や、乳糖の膜透過性が異なる株である可能性が考えられ、大腸菌と大腸菌類縁菌の鑑別をより難しくしていると考えられた。また、ONPG試験（＋）・lacZ（－）・lacY（－）の2株については、βガラクトシダーゼをコードする遺伝子の配列が異なることが考えられた。

E.albertiiは、EPECと同様にeaeを持ち、下痢、腹痛、発熱などの症状を呈する食中毒事例が近年多く報告されている。E.albertiiはEPECと性状が類似しているため、疑わしいコレラのように分離した場合は、E.albertii特異的なPCRを行い、大腸菌との鑑別を行う必要がある。なお、今回の菌株は、白血分離菌であることから、DHL寒天培地上で赤色コロニーを示し、より大腸菌と類似していたため、誤同定された可能性が考えられた。
表4 大腸菌類縁菌疑い株と大腸菌・E.albertii・E.fergusoniiの生化学性状の比較

<table>
<thead>
<tr>
<th>性状</th>
<th>乳糖非分解性株ONPG試験 (+) lacZ (-) lacY (-)</th>
<th>乳糖解性株ONPG試験 (+) lacZ (-) lacY (-)</th>
<th>大腸菌 (1)</th>
<th>非定型的大腸菌 (2)</th>
<th>E.albertii (3)</th>
<th>E.fergusonii (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>インドール</td>
<td>+</td>
<td>+</td>
<td>98</td>
<td>80</td>
<td>96.2</td>
<td>98</td>
</tr>
<tr>
<td>運動性</td>
<td>-</td>
<td>+</td>
<td>95</td>
<td>5</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>ウレアーゼ</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>クエン酸（シモンズ）</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>酮酸</td>
<td>+</td>
<td>+</td>
<td>90</td>
<td>40</td>
<td>92.3</td>
<td>96</td>
</tr>
<tr>
<td>マロン酸</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>Voges-Proskauer</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>リシンデカルボシラーゼ</td>
<td>+</td>
<td>+</td>
<td>90</td>
<td>40</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>オルニチンデカルボシラーゼ</td>
<td>+</td>
<td>+</td>
<td>65</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>アルギニジヒドラーゼ</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>ラクトース</td>
<td>-</td>
<td>-</td>
<td>95</td>
<td>25</td>
<td>3.9</td>
<td>0</td>
</tr>
<tr>
<td>サッカロース</td>
<td>+</td>
<td>-</td>
<td>50</td>
<td>15</td>
<td>19.2</td>
<td>0</td>
</tr>
<tr>
<td>アドニトール</td>
<td>-</td>
<td>+</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>アラビノース</td>
<td>+</td>
<td>+</td>
<td>99</td>
<td>85</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>セロピオース</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>イノシトール</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>マルトース</td>
<td>+</td>
<td>+</td>
<td>95</td>
<td>80</td>
<td>88.5</td>
<td>96</td>
</tr>
<tr>
<td>サツモトウロ</td>
<td>+</td>
<td>+</td>
<td>98</td>
<td>93</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>サリン</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>65</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>ソルビトール</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>10</td>
<td>26.9</td>
<td>65</td>
</tr>
<tr>
<td>トレハロース</td>
<td>+</td>
<td>+</td>
<td>98</td>
<td>90</td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>キシリオース</td>
<td>-</td>
<td>+</td>
<td>95</td>
<td>70</td>
<td>0</td>
<td>96</td>
</tr>
</tbody>
</table>

※1 糖分解は1晩培養後に判定

E.fergusonii は、敗血症などの報告はあるが、病原性については明らかになっていない。LTをもつE.fergusoniiについては、2012年に鶏から検出された報告はあるが、ヒトからの検出報告はないことから、今後も注視していく必要がある菌種と考えられた。

今回の解析で、乳糖分解性を利用した下痢原性大腸菌の培地での鑑別は難しいと考えられた。但し、今回のように大腸菌と誤同定されやすい類縁菌の検出には有効である可能性が示された。E.albertii, E.fergusonii は、それぞれキシロースやアドニトールなどを用いた選択分離培地が提案されているが、日常的に大腸菌・大腸菌類縁菌を鑑別する培地を考えると、乳糖分解性は良い指標になると思われる。今後、さらに性状などを整理し、大腸菌と類縁菌の鑑別を容易に行うことができる培地を検討していきたいと考えている。

参考文献

3）Hyma KE, Lacher DW, Nelson AM, et al.: Evolutionary Genetics of a New Pathogenic Escherichia Species:

本県における重症熱性血小板減少症候群に関する実態調査（第 2 報）

野町太朗 1) 三浦美穂 1) 有馬栞莉 1) 井上志穂 1) 伊東愛梨 2) 保田和里 1) 萩平敦朗 1) 吉野修司 1) 元明秀成 1)

Survey on Severe Fever with Thrombocytopenia Syndrome in Miyazaki Prefecture

Taro NOMACHI, Miho MIURA, Siori ARIMA, Shiho INOUE, Eri ITO, Asato YASUDA, Atsuro HAGIHIRA, Shuji YOSHINO, Hidenari GANMYO

要旨

本県における重症熱性血小板減少症候群（SFTS）の発生状況を把握することを目的として，人の疫学調査，マダニ及び犬・猫の SFTS 病毒遺伝子及び抗体保有状況に関する実態調査を行った。

疫学調査では，5 月の発生が最も多く冬期の発生も確認された。患者は 30 歳代～90 歳代で、全体の約 90％が 60 歳以上であり、死亡例の約 55％が 80 歳以上であった。また、生存例と死亡例の比較では血清中のウイルス遺伝子量及び基礎疾患を有する患者が死亡例では多かった。

推定感染時活動内容としては農作業（含畜産業）が最も多かった。マダニ及び犬・猫から SFTS 病毒遺伝子は検出されなかった。犬・猫の抗体調査では、犬 3 匹、猫 1 匹が抗体陽性を示した。推定感染時活動内容としては農作業（含畜産業）が最も多かった。マダニ及び犬・猫から SFTS 病毒遺伝子は検出されなかった。犬・猫の抗体調査では、犬 3 匹、猫 1 匹が抗体陽性を示した。

キーワード：重症熱性血小板減少症候群（SFTS），疫学調査，マダニ，犬・猫，宮崎県
Viral RNA Mini キットを用いて RNA を抽出後、福士らの方法に準じて Real-time RT-PCR を行った。

2 マダニに関する調査
1）対象
2015 年 4 月〜2016 年 3 月に患者が発生した県南部及び患者が未発生である県西部において 2 ヶ月に 1 回、以下の条件を満たす地点で採取されたマダニを対象とした。
 a) 人の活動場所で、猪の活動痕跡のある場所。
 b) 県南部では感染推定地の近辺で上記条件を満たす場所であること。

2）方法
　旗振り法によって 1 時間採取を行い、採取したマダニを種別及びステージ別に分類し、1〜5 匹ずつプールしたものを検体とした。
　RNA 遺伝子の抽出は ISOGEN II を使用し、マダニからの SFTSV 検出マニュアルに準じて Real-time RT-PCR を行った。

3 動物に関する調査
1）対象
2016 年 2 月〜6 月に県北部、県央部北側、県西南部の 12 動物病院で採血された 122 匹（狩猟犬 15 匹、愛玩犬 99 匹、不明・無記載 8 匹）、猫 123 匹の計 245 匹を対象とした。

2）方法
　各動物病院にて遠心（3000rpm、10 分）した血清を検体とし、以下の調査を実施した。
 a) ウイルス遺伝子の検出
　検体から QIApp Viral RNA Mini キットを用いて RNA 抽出後、福士らの方法に準じた Real-time RT-PCR 及び検査マニュアルによる RT-PCR をおこなった。
 b) 抗体保有状態調査
 ア) 抗原スライドの作成
 抗原は宮崎県で発生した SFTS 患者から分離された SFTS ウイルスを、VeroE6 細胞で 2 代継代し、ほぼ全細胞がウイルス抗原陽性となったものを用いた。
 また、感染細胞をトリプシン処理、PB 洗浄し浮遊化させた後スライドグラスにスポットし、安全キャビネット内で UV 照射下において 2 時時間風乾した後アセトン固定した。
 イ) 間接蛍光抗体法（IF 法）
 作製した抗原スライドを用いて、PBS で 20 倍希釈した犬・猫の血清を常法どおり IF を行い、40 倍以上を陽性とした。また、陽性検体は抗体価の測定を行った。

3）聞き取り調査
　採血を実施した犬・猫の飼い主に対し飼養方法、マダニ着付着の有無、マダニ駆除剤使用の有無について聞き取り調査を行った。

結果

1 疫学調査
　図 1 に月別の患者発生数を示した。患者の発生は 5 月が最も多く、全体の 18.9%であった。一方、全体の 13.5%が冬期（12 月〜2 月）の発生であった。
　図 2 に年齢別患者数及び死亡者数を示した。
　患者の年齢は 30 歳代〜90 歳代であり、60 歳代以上での発生が全体の 89.2%となった。また、死亡患者の約 45.5%が 80 歳代以上であった。

図 1 月別患者発生数
図 2 年齢別患者数
表2に生存例と死亡例の各種数値の比較を示した。血中ウイルス遺伝子量及び基礎疾患の有無において死亡患者の方が高い傾向であった。

表2 生存例及び死亡例の比較

<table>
<thead>
<tr>
<th>比較項目</th>
<th>生存例 (26例)</th>
<th>死亡例 (11例)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均年齢</td>
<td>70.2</td>
<td>74.5</td>
</tr>
<tr>
<td>男女比</td>
<td>1:1.6</td>
<td>1:0.6</td>
</tr>
<tr>
<td>初診日</td>
<td>2.8</td>
<td>3.8</td>
</tr>
<tr>
<td>血中ウイルス遺伝子量 (コピー/4㎕)</td>
<td>4.7×10^4</td>
<td>2.8×10^5</td>
</tr>
<tr>
<td>基礎疾患の有無 (肝機能・糖尿・高血圧)</td>
<td>有:5名 無:16名</td>
<td>有:4名 無:4名</td>
</tr>
</tbody>
</table>

図3に宮崎県内における患者の感染推定場所を示した。九州山地沿いの市町村での発生は無いものの、推定感染場所は県内での偏りは見られなかった。

図3 地域別患者推定感染場所

表3活動内容を示した。最も多くかったのは農作業（含畜産業）であり、山林作業、庭仕事と続いた。

表3 活動内容

<table>
<thead>
<tr>
<th>活動内容</th>
<th>数</th>
</tr>
</thead>
<tbody>
<tr>
<td>農作業</td>
<td>12</td>
</tr>
<tr>
<td>山林作業</td>
<td>6</td>
</tr>
<tr>
<td>庭仕事</td>
<td>5</td>
</tr>
<tr>
<td>散歩</td>
<td>4</td>
</tr>
<tr>
<td>造園業</td>
<td>2</td>
</tr>
<tr>
<td>野外活動無し</td>
<td>2</td>
</tr>
<tr>
<td>猫</td>
<td>1</td>
</tr>
<tr>
<td>聞き取り不可</td>
<td>5</td>
</tr>
</tbody>
</table>

2 マダニに関する調査

表4に採取したマダニの種別、ステージ別採取数を示した。県西部地区ではマダニ属少なく、県南部地区ではヒゲナガチマダニを見ることが出来なかったが、他種については両地域間において差は見られなかった。

3 動物に関する調査

1）SFTSウイルス遺伝子及び抗体保有状況

表5に動物の抗体検査結果を示した。抗体検査では犬3匹、猫1匹が抗体陽性であった。

一方、遺伝子検査で陽性を示した検体は確認されなかった。

表6に抗体陽性であった犬・猫の概要を示したが、大きな特徴は確認されなかった

2）聞き取り調査結果

表7にマダニの付着状況を、表8にダニ駆除剤投与状況を示した。飼養目的別、猫は飼養形態別に示した。

アンケートの回答を基に推定されるマダニの付着状況は、狩猟犬では93.8%で付着が確認されたのに対し、愛玩犬では35.9%であった。

一方、猫は全体で10.7%であった。

ダニ駆除剤の投与状況を見ると1年を通じて投与していると回答した人は、犬で30.9%、猫で15.1%となり全く投与していないと回答した人は犬で27.8%、猫で61.3%であった。

-66-
表 4 マダニ種別及びステージ別採取数

<table>
<thead>
<tr>
<th>県西部地区</th>
<th>県南部地区</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>合計</td>
</tr>
<tr>
<td>4月 6月 8月 10月 12月 2月</td>
<td>合計</td>
</tr>
<tr>
<td>♂♀</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>♀♂</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>合計</td>
<td>0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>タカサゴ "キララマダニ"</th>
<th>タカサゴ "キララマダニ"</th>
</tr>
</thead>
<tbody>
<tr>
<td>若虫</td>
<td>9 3 6 1 0 0</td>
</tr>
<tr>
<td>幼虫</td>
<td>0 0 2 0 0 0</td>
</tr>
<tr>
<td>合計</td>
<td>9 3 6 1 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>タカサゴ "チャマダニ"</th>
<th>タカサゴ "チャマダニ"</th>
</tr>
</thead>
<tbody>
<tr>
<td>若虫</td>
<td>12 2 18 14 10 12</td>
</tr>
<tr>
<td>幼虫</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>合計</td>
<td>14 3 0 0 10 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>キチマダニ</th>
<th>キチマダニ</th>
</tr>
</thead>
<tbody>
<tr>
<td>若虫</td>
<td>4 6 10 6 12</td>
</tr>
<tr>
<td>幼虫</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>合計</td>
<td>5 6 0 0 14 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>キチマダニ</th>
<th>キチマダニ</th>
</tr>
</thead>
<tbody>
<tr>
<td>若虫</td>
<td>1 0 2 0 1 0</td>
</tr>
<tr>
<td>幼虫</td>
<td>0 1 0 0 0 0</td>
</tr>
<tr>
<td>合計</td>
<td>1 0 2 0 1 0</td>
</tr>
</tbody>
</table>

表 5 抗体保有率

<table>
<thead>
<tr>
<th>牧母</th>
<th>狩猟犬</th>
<th>愛玩犬</th>
<th>不明</th>
<th>合計</th>
<th>猫</th>
</tr>
</thead>
<tbody>
<tr>
<td>陽性数</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>陰性数</td>
<td>16</td>
<td>95</td>
<td>8</td>
<td>119</td>
<td>122</td>
</tr>
<tr>
<td>抗体保有率 (%)</td>
<td>11.1</td>
<td>1</td>
<td>0</td>
<td>2.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

表 6 抗体陽性検体概要

<table>
<thead>
<tr>
<th>用途</th>
<th>年齢</th>
<th>抗体価</th>
<th>野生動物の出現</th>
<th>飼養方法</th>
<th>マダニ付着</th>
</tr>
</thead>
<tbody>
<tr>
<td>狗</td>
<td>狩猟犬</td>
<td>4歳</td>
<td>320</td>
<td>猪・猿</td>
<td>屋内飼育(外出有)</td>
</tr>
<tr>
<td>愛玩犬</td>
<td>8歳</td>
<td>160</td>
<td>猪・鹿・その他</td>
<td>屋外</td>
<td>有</td>
</tr>
<tr>
<td>狩猟犬</td>
<td>3歳以上</td>
<td>640</td>
<td>不明</td>
<td>屋外</td>
<td>有</td>
</tr>
<tr>
<td>猫</td>
<td>愛玩動物</td>
<td>15歳</td>
<td>80</td>
<td>出現せず</td>
<td>室外飼い</td>
</tr>
</tbody>
</table>

-67-
まとめと考察

1 疫学調査

人に関する疫学の継続調査では、発生月は5月が最も多く前回の報告と同じ傾向が続いた。また、冬期（12月～2月）の発生は前回の報告後も確認されており、1年を通しての警戒が必要である点も変化は無かった。患者は60歳代以上での発生が89.2％及び死亡患者の80歳代以上が全体の約半数（45.5％）を占めた。患者の発生地域は、熊本県との県境である九州山地沿いでの発生が見られなかったが、県北部から南部まで発生に偏りは見られなかった。

2 マダニに関する調査

SFTSは、マダニからのSFTSウイルス遺伝子の検出⑤及び野生動物等からの抗体上昇の報告⑤～⑦がされていることから、SFTSウイルス保有マダニがベクターとなり、吸血された動物とマダニ間で感染サイクルを形成していると考えられる。

今回の調査では、西部におけるヒゲナガチマダニや南部におけるマダニ属等、幾つかの種が異なかったが、両地区とも優占種はタカサゴチマダニと考えられ人に対し寄生性があるとされるフタトガチマダニ、タカサゴキララマダニは両地区で確認されてることから、マダニ種に大きな違いは無いと考えられた。

マダニからのSFTSウイルス遺伝子は検出されなかった。原因としては、手技的問題、採材場所等が考えられるため今後これらに関して更に検討していきたいと考える。

3 動物に関する調査

動物に関する調査では、動物病院に来院する愛玩動物（犬、猫）及び狩猟犬を対象に遺伝子検査及び抗体調査を行った。

遺伝子検査では陽性となる検体は無かったが、抗体検査では犬3匹、猫1匹が抗体陽性となかった。狩猟犬に関しては国立感染症研究所が実施した調査結果⑤～⑦及び他県の結果⑤と同様であった。

愛玩犬及び猫からも抗体陽性が確認されたことから、人の生活環境内でSFTSウイルス保有マダニが愛玩動物の飼養形態等によっては持ち込まれる事が示唆された。

飼い主に行った聞き取り調査では狩猟犬の90％以上、愛玩犬の約3割以上でマダニの付着が確認されている。一方、ダニ駆除剤の投与状
況は、投与していないと回答した人及び 1 年中を通して投与していると回答した人は共に約 30％であった。しかし、今回の調査結果から冬期でも SFTS の発生が確認されていることから 1 年を通して動物に対するマダニ対策が必要であると考えられる。

猫は、ダニ駆除剤の投与状況が全体で約 10％と低いか、マダニ付着率も低いかという結果であった。

今回の結果から猫とマダニに関しては更なる調査が必要であると考えられるが、抗体陽性の猫がいたことから、猫のマダニ対策も行うことが必要であると考えられる。

今回の調査から一般的な啓発活動の他、犬及び猫に対するマダニ対策の周知が必要であると考えられた。

謝辞

今回の実態調査にあたり、聞き取り等を行っていた各保健所の皆様、各医療機関、犬、猫の採材に御協力いただいた宮崎県獣医師会及び各動物病院の方々に厚くお礼申し上げます。

参考文献

1) 野町太朗ら：本県における重症熱性血小板減少症候群に関する実態調査（第一報），宮崎県衛生環境研究所報，No.26，59-63(2014)
2) 福士秀悦ら：リアルタイム PCR による SFTS 診断法の開発，厚生労働科学研究費補助金新型インフルエンザ等新興・再興感染症研究事業 SFTS の制圧に向けた総合的研究，83-89(2015)
3) 森川茂ら：マダニからの SFTS 病原ウイルス検出マニュアル（各地衛研配布資料）
4) 下島昌幸ら：SFTS 病原ウイルス検査マニュアル
5) 森川茂ら：重症熱性血小板減少症候群（SFTS）ウイルスの国内分布状況（第 2 報），IASR，Vol. 35，75-76 (2014)
6) 岩本由佳ら：マダニの SFTS 病原ウイルス保有状況に関する調査，鹿児島県環境保健センター所報，第 16 号，55-57 (2015)
7) 前田健：野生動物における SFTS 病原ウイルス保有状況，IASR，Vol. 37，51-53(2016)
8) 高尾信一ら：広島県内の犬における重症熱性血小板減少症候群（SFTS）ウイルス抗体の保有状況，広島県立総合技術研究所保健環境センター研究報告，No.21，15-18（2013）
宮崎県における環境放射能調査（第 29 報）
野口翔 有留裕太 寺山晃司 富山典孝

Radioactivity Monitoring Data in Miyazaki Prefecture (X XIX)
Sho NOGUCHI, Yuta ARIDOME, Koji TERAYAMA, Noritaka TOMIYAMA

要旨
当研究所は，昭和 63 年度から本県の環境中及び食品に含まれる放射性物質の調査を行っており，本報告では，平成 28 年 4 月から平成 29 年 3 月までの調査結果について報告する。
全 β 放射能測定は，定時降水試料の全てにおいて検出限界値未満であった。γ 線核種分析は，茶２試料のうち 1 試料から Cs-137 が 0.43Bq/kg，土壤の上層及び下層から Cs-137 がいずれも 2.1Bq/kg 検出されたが，過去に検出された値と同程度の数値であった。その他の γ 線核種分析試料の人工放射性物質の数値は検出限界値未満であった。緊急時モニタリング及びモニタリングポストによる空間放射線量率は，一部において過去の最高値を上回るものはあったが降雨の影響と考えられ，それを除くと過去に検出された値と同程度の数値であった。
なお，本調査は原子力規制委員会原子力規制庁からの受託事業として実施したものである。

キーワード：放射能，全 β 放射能測定，γ 線核種分析，空間放射線量率

はじめに
本県では，昭和 63 年度から文部科学省（現原子力規制委員会原子力規制庁）委託の全国調査の一環として平常時における環境放射能調査を続けており，今回は平成 28 年度の調査結果を取りまとめたので，その概要を報告する。

方法
1 調査対象
1) 定時降水
当研究所の屋上に降水採取装置を設置し，降水を毎日（休日を除く）午前 9 時に採取した。採取した降水に担体等（I−，Ag＋，HNO₃）を添加した後，濃縮乾固し，全 β 放射能を測定した。降雨時のみ測定し，1 年間で 100 回採取した。
2) 大気浮遊じん
当研究所の屋上にハイボリュームエアサンプラーやを設置し，大気浮遊じんをろ纸上に採取して γ 線核種分析を行った。毎月 3 回採取し，3 か月分を併せて 1 測定とした。
3) 降下物
水を張った大型水盤を当研究所の屋上に設置し，降下する放射性物質を捕集した。捕集した降下物に担体等を添加した後，濃縮乾固し，γ 線核種分析を行った。毎日採取し，1 か月分を併せて 1 測定とした。
4) 陸水
当研究所の試験室内に宮崎市上下水道局から供給される蛇口水を 1 年に 1 回採取し，降下物と同様の方法で処理して γ 線核種分析を行った。
5) 土壌
採取場所 1 か所から 1 年年に 1 回採取した上層（0～5cm）及び下層（5～20cm）の土壌を乾燥，粉砕及び分取し，γ 線核種分析を行った。
6) 精米，牛乳
それぞれの生産地 1 か所から 1 年年に 1 回採取し

衛生化学部
た各試料を、前処理を行わずγ線核種分析を行った。

7）野菜
生産地1か所から1年に1回採取した野菜（ダイコン、ホウレンソウ）を乾燥、炭化及び灰化し、γ線核種分析を行った。

8）茶
茶園2か所から生産された荒茶を1年に1回採取、乾燥、炭化及び灰化し、γ線核種分析を行った。

9）空間放射線量率
モニタリングポストを当研究所屋上及び県内3保健所（都城、小林及び延岡）に設置し、常時測定を行った。

10）その他（緊急時モニタリング）
東日本大震災による東京電力（株）福島第一原子力発電所事故に伴い、ひと月に1回、当研究所における地上1m高さの空間放射線量率測定を行った。

2 使用機器
1）全β放射能測定
全β放射能測定装置（アロカ製JDC-3201）
2）γ線核種分析
ガルマニウム半導体検出器による環境及び食品試料中のγ線核種分析を行った。計測値は、計測値の範囲内であるとされる。なお、これら3試料以外のものについては、環境放射性物質は検出限界値未満であった。

結果
まず、定時降水試料中の全β放射能測定結果を表1に示す。平成28年度は総量2877.6mmの降水があり、全β放射能を測定した結果、全てにおいて検出限界値未満であった。

次に、ガルマニウム半導体検出器による環境及び食品試料中のγ線核種分析結果を図2に示す。平成28年度は茶1試料及び上層及び下層からCs-137が検出された。茶及び上層土壌については、平成25年度から平成27年度までの過去3年間に検出された数値と同程度であったが、下層土壌についてはこの範囲を超えていた。しかし、平成23年度および前回の測定値以上の値が検出されている。なお、これら3試料以外のものについては、人工放射性物質は検出限界値未満であった。

さらに、緊急時モニタリングとして測定した地上1m高さの空間放射線量率を図3に示す。1年をとおして、測定値は平成25年度から平成27年度の過去3年間の値の範囲内であった。

最後に、モニタリングポストによる空間放射線量率測定結果を図4に示す。平成29年2月及び3月の当研究所の測定値が、平成25年度から平成27年度の過去3年間の最高値を上回っているが、いずれも短時間に多量の降雨が記録されており、その影響と考えられる。それ以外の測定値については、平成25年度から平成27年度までの過去3年間の値の範囲内であった。

まとめ
平成28年度における県内の降水、大気浮遊じん、降下物、陸水（蛇口水）、土壌、野菜、牛乳、牛乳（ダイコン、ホウレンソウ）及び茶の放射能並びに空間放射線量率について調査した。茶については2試料のうち1試料から、土壌については上層及び下層からCs-137が検出されたが、過去に検出された値とは同程度であった。また、その他の試料についても平成25年度から平成27年度までの過去3年間に値とほぼ同程度であり、異常値は認められなかった。

文献
1）福地哲郎、山本勇志、湯浅友識、安部留美子、森岡浩文、野崎祐司、樫山恭子：宮崎県における環境放射能調査（第24報）、宮崎県衛生環境研究所年報、23, 93-96, (2011)
表1 定時降水試料中の全β放射能測定結果

<table>
<thead>
<tr>
<th>採水年月</th>
<th>降水量 (mm)</th>
<th>放射能濃度 (Bq/L)</th>
<th>月間降水量 (MBq/km²)</th>
<th>検定数</th>
<th>最低値</th>
<th>最高値</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成28年4月</td>
<td>289.2</td>
<td>15</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>5月</td>
<td>336.3</td>
<td>9</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>6月</td>
<td>581.6</td>
<td>14</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>7月</td>
<td>544.8</td>
<td>11</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>8月</td>
<td>135.8</td>
<td>5</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>9月</td>
<td>119.0</td>
<td>4</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>10月</td>
<td>330.5</td>
<td>10</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>11月</td>
<td>140.0</td>
<td>10</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>12月</td>
<td>70.1</td>
<td>5</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>平成29年1月</td>
<td>75.4</td>
<td>5</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>2月</td>
<td>70.4</td>
<td>3</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>3月</td>
<td>184.5</td>
<td>9</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>-</td>
<td>2877.6</td>
<td>100</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>年間値</td>
<td>2877.6</td>
<td>100</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
</tbody>
</table>

過去3年間の計数値がその計数誤差の3倍未満

*1 過去3年間の計
*2 過去3年間の最小値
*3 過去3年間の最大値
*4 過去3年間の最小及び最大値

表2 ゲルマニウム半導体検出器による環境及び食品試料中のγ線核種分析結果

<table>
<thead>
<tr>
<th>試料名</th>
<th>採取場所</th>
<th>平成28年度の採取年月</th>
<th>検体数</th>
<th>226Ra</th>
<th>平成25～27年度の過去3年間の値</th>
<th>平成28年度に検出されたその他の人工放射性核種</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>大気浮遊じん</td>
<td>宮崎市</td>
<td>H28.4～H29.3</td>
<td>4</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>降下物</td>
<td>&</td>
<td>H28.4～H29.4</td>
<td>12</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>陸水（地表水）</td>
<td>&</td>
<td>H28.6</td>
<td>1</td>
<td>2.1</td>
<td>N.D</td>
<td>2.5</td>
<td>なし</td>
</tr>
<tr>
<td>土壌</td>
<td>&</td>
<td>H28.7</td>
<td>1</td>
<td>320</td>
<td>N.D</td>
<td>180</td>
<td>なし</td>
</tr>
<tr>
<td>0-5cm</td>
<td>&</td>
<td>H28.7</td>
<td>1</td>
<td>2.1</td>
<td>N.D</td>
<td>1.3</td>
<td>なし</td>
</tr>
<tr>
<td>5-20cm</td>
<td>&</td>
<td>H28.7</td>
<td>1</td>
<td>460</td>
<td>N.D</td>
<td>280</td>
<td>なし</td>
</tr>
<tr>
<td>精米</td>
<td>&</td>
<td>H28.10</td>
<td>1</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>野菜</td>
<td>&</td>
<td>H28.12</td>
<td>1</td>
<td>N.D</td>
<td>0.029</td>
<td>なし</td>
<td>Bq/kg生</td>
</tr>
<tr>
<td>茶</td>
<td>&</td>
<td>H28.12</td>
<td>1</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>牛乳</td>
<td>&</td>
<td>H28.8</td>
<td>1</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
<td>N.D</td>
</tr>
</tbody>
</table>

(N.D : 計数値がその計数誤差の3倍未満)

-72-
表3 ナイシンチレーションサーベイメータによる地上1m高さでの空間放射線量率測定結果（緊急時モニタリング）

<table>
<thead>
<tr>
<th>検査場所</th>
<th>検査月</th>
<th>平成28年度の測定値（nGy/h）</th>
<th>平成25～27年度の過去3年間の値（nGy/h）</th>
<th>最低値</th>
<th>最高値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4月</td>
<td>34</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5月</td>
<td>32</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>32</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7月</td>
<td>32</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8月</td>
<td>32</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9月</td>
<td>30</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10月</td>
<td>32</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11月</td>
<td>36</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12月</td>
<td>40</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1月</td>
<td>34</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2月</td>
<td>40</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3月</td>
<td>32</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

表4 モニタリングポストによる空間放射線量率測定結果

<table>
<thead>
<tr>
<th>設置場所 (単位)</th>
<th>衛生環境研究所 (宮崎市) (nGy/h)</th>
<th>都城保健所 (都城市) (nGy/h)</th>
<th>小林保健所 (小林市) (nGy/h)</th>
<th>延岡保健所 (延岡市) (nGy/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>検査月</td>
<td>最低値</td>
<td>最高値</td>
<td>平均値</td>
</tr>
<tr>
<td>平成28年 4月</td>
<td>28</td>
<td>52</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>5月</td>
<td>28</td>
<td>56</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>6月</td>
<td>27</td>
<td>51</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>7月</td>
<td>28</td>
<td>56</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>8月</td>
<td>27</td>
<td>41</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>9月</td>
<td>27</td>
<td>51</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>10月</td>
<td>27</td>
<td>56</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>11月</td>
<td>28</td>
<td>56</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>12月</td>
<td>28</td>
<td>45</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>平成29年 1月</td>
<td>27</td>
<td>51</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>66</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>3月</td>
<td>28</td>
<td>65</td>
<td>31</td>
<td>38</td>
</tr>
<tr>
<td>年間</td>
<td>27</td>
<td>66</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>過去3年間(平成25～27年度)</td>
<td>24</td>
<td>60</td>
<td>27</td>
<td>37</td>
</tr>
</tbody>
</table>
調理におけるアレルゲンの移行性の検証

西村幸江 渡邊利奈 1) 富山典孝

Transitional Inspection of the Allergen in the Cooking

Yukie NISHIMURA，Rina WATANABE，Noritaka TOMIYAMA

要旨

食物アレルギーを持つ患者は乳児から大人まで幅広い年代でみられ，年々増加している。平成13年4月から特定原材料に指定されている食品を使用し製造した場合，加工食品については表示を行うことが義務づけられているが，外食で提供される場合には表示の義務は課されていない。そこで，今回，家庭や外食において，調理の際に起こるアレルゲンのコンタミネーションを想定し，特に甲殻類の中でもえびアレルゲンの移行性を検証する実験を行った。

えびと他の食材を炒める，煮る，揚げるなど7種類の調理を行い，えび以外の食材に含まれるエビアレルゲンの濃度をELISAで測定した。その結果，揚げ物調理において，衣をつけて揚げた後には揚げ油にアレルゲンが移行していなかったが，素揚げをした後の揚げ油にはアレルゲンが含まれていた。また，刺身の盛り合わせや焼き魚を作る調理を想定して実施した実験においては，えびを触った手で他の食材に触れると，えびアレルゲンが移行することがわかった。調理中のコンタミネーションを防ぐことは困難であることが示唆された。

キーワード：特定原材料，えびアレルゲン

はじめに

平成13年4月に厚生労働省は特定の食物アレルギー物質に対する健康被害を防止することを目的として，容器包装された加工食品に卵，乳，小麦，そば，落花生の5品目の表示を義務づけた。平成20年6月には，えび・かにの表示も追加され7品目が表示義務の対象となった。しかし，これらの表示義務は外食等に含まれていなかったため，今後どのような対策を講じていくべきかが消費者庁で検討されているところである1)。

一方，食物アレルギーの原因としては乳幼児期では卵，乳，小麦が多いが，学童期を過ぎる頃からえび・かになど甲殻類が多くなり，成人での原因食品は小麦に次いで2位となっている。また，誤食の原因物質は甲殻類が最も多いことがわかっている2)。そこで，今回，家庭や飲食店においてえびを使用した調理，あるいは同じ調理場にえびがあることを想定し，アレルギー物質(えびアレルゲン)のその他の食材への移行性を検証したところ若干の知見を得たので報告する。

材料と方法

使用した材料を表1に示す。これらを組み合わせて実際に調理し，表2で示す7種類の料理におけるえびアレルゲンの移行性を検証した。

えびアレルゲンの測定は，通知法3)で示されており，バリデーション実施済みのELISAキット（(株)マルハニチロ製　甲殻類キットII「マルハニチロ」）を使用し，試料は必要に応じ4000～40000倍に希釈して検査を行った。
結果および考察

料理別のえびアレルゲン含有量の測定結果を表2に示した。えびを使用した料理（炒め物、麺料理、揚げ物、サラダ、茶碗蒸し）では、移行量にかなりの幅はあったが、ほぼ全ての料理で他の材料にえびアレルゲンが移行していた。しかし、天ぷらを調理した後の揚げ油（濾過後）からは、えびアレルゲンは検出されず、波田野らが行った、えびの天ぷらを調理後に、不織布で油を濾過することでアレルゲンが半減し、さらに遠心分離をすることで検出限界以下となった報告4)と同様の結果が得られた。しかし、素揚げをした後の揚げ油は濾過してもえびアレルゲンを除去することはできなかった。また、えびが存在する調理場で、刺身の盛り合わせや、焼き魚を作る調理を想定した実験では、えびを触った手で他の魚介類等に触れると、えびアレルゲンが移行することがわかった。これらの結果から、飲食店等での調理の場合、様々な食材があり調理方法も多種多様であるため、調理中のコンタミネーションを防ぐことは非常に困難であり、外食等におけるアレルギー対応が加工食品の様に進まない現状を示唆するものであった。

今後も食物アレルギー患者が安心して食事ができるよう様々な研究を行っていきたい。

参考文献

1）消費者庁：外食等におけるアレルゲン情報の提供の在り方検討会中間報告. 平成27年4月
2）消費者庁：食物アレルギーに関連する食品表示に関する調査研究事業報告書. 平成28年3月
3）消費者庁：「アレルギー物質を含む食品の検査方法について」平成22年9月10日付消食表第286号（最終改訂；平成26年3月26日付消食第36号）
4）波田野智穂ほか：揚げ物調理におけるえび由来アレルギー物質のコンタミネーション防止策について. 新潟県長岡地域振興局健康福祉環境部. 平成23年度全国食品衛生監視員研修会

表1 材料一覧

<table>
<thead>
<tr>
<th>材料名</th>
<th>概要</th>
<th>下処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>えび</td>
<td>冷凍ブラックタイガー</td>
<td>包装のまま、流水で解凍し、背わた、尾、殻を除去</td>
</tr>
<tr>
<td>キャベツ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>刺身</td>
<td>まぐろの柵</td>
<td>1 cm幅に切る</td>
</tr>
<tr>
<td>さつまいも</td>
<td>1 cm角と1 cm幅に切る</td>
<td></td>
</tr>
<tr>
<td>ラーメン</td>
<td>生麺</td>
<td></td>
</tr>
<tr>
<td>鮭</td>
<td>鮭の切り身</td>
<td></td>
</tr>
<tr>
<td>揚げ油</td>
<td>食用油脂（大豆・菜種）</td>
<td></td>
</tr>
<tr>
<td>天ぷら衣</td>
<td>天ぷら粉</td>
<td>包装の表示どおりに水と混合</td>
</tr>
</tbody>
</table>
表2 炊物別えびアレルゲンの測定結果

<table>
<thead>
<tr>
<th>料理名</th>
<th>調理法 (検体調整法)</th>
<th>検査試料</th>
<th>測定値 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>炒め物</td>
<td>キャベツ（ブランク）</td>
<td>キャベツ</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>キャベツ100gと生えび3尾（30g）を一緒に炒める</td>
<td>キャベツ</td>
<td>2000<</td>
</tr>
<tr>
<td></td>
<td>キャベツ100gとゆでえび5尾（30g）を一緒に炒める</td>
<td>キャベツ</td>
<td>796.9</td>
</tr>
<tr>
<td>麺料理</td>
<td>ラーメン（ブランク）</td>
<td>ラーメン</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>キャベツ100gと生えび1尾（14g）とラーメン115gを一緒にゆでる</td>
<td>キャベツ</td>
<td>264.2</td>
</tr>
<tr>
<td></td>
<td>スープ</td>
<td>スープ</td>
<td>2000<</td>
</tr>
<tr>
<td>扬げ物</td>
<td>揚げ油（ブランク）</td>
<td>揚げ油</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>さつまいも（ブランク）</td>
<td>さつまいも</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>揚げ物（素揚げ）</td>
<td>揚げ油</td>
<td>741.3</td>
</tr>
<tr>
<td></td>
<td>さつまいも（素揚げ）</td>
<td>さつまいも</td>
<td>2000<</td>
</tr>
<tr>
<td></td>
<td>扬げ油250gを熱し、角切りしたさつまいも50gと、えび4尾（50g）を素揚げする。揚げ油は濾過する。</td>
<td>さつまいも</td>
<td>379.1</td>
</tr>
<tr>
<td></td>
<td>扬げ油500gを熱し、衣280gにえび5尾を混ぜて揚げる。さらに同じ衣に輪切りしたさつまいも100gを入れて揚げる。揚げ油は濾過する。</td>
<td>天かす</td>
<td>89.1</td>
</tr>
<tr>
<td>サラダ</td>
<td>キャベツ30gと生えび1尾（7g）を混ぜ合わせる</td>
<td>キャベツ</td>
<td>157.9</td>
</tr>
<tr>
<td></td>
<td>キャベツ30gとゆでえび1尾（7g）を混ぜ合わせる</td>
<td>キャベツ</td>
<td>148.9</td>
</tr>
<tr>
<td>茶碗蒸し (えび入り)</td>
<td>市販の茶碗蒸しだから、えびのみを除去</td>
<td>茶碗蒸し</td>
<td>2000<</td>
</tr>
<tr>
<td>刺身盛合わせ</td>
<td>まぐろ（ブランク）</td>
<td>まぐろ</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>生えびを触った後、まぐろを盛り付ける</td>
<td>まぐろ</td>
<td>36.1</td>
</tr>
<tr>
<td></td>
<td>ゆでえびを触った後、まぐろを盛り付ける</td>
<td>まぐろ</td>
<td>103.4</td>
</tr>
<tr>
<td>焼き魚</td>
<td>鮭（ブランク）</td>
<td>鮭</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>生えびを触りその手で鮭58gを触った後、焼く</td>
<td>鮭</td>
<td>28.8</td>
</tr>
</tbody>
</table>
宫崎県沿岸海域における COD に関連する有機物指標と栄養塩類等について

中村公生 赤﨑いずみ 島田玲子 三角敏明

COD Related Organic Indicators and Nutrient Salts etc in Miyazaki Coastal Waters

Kimio NAKAMURA, Izumi AKAZAKI, Reiko SHIMADA, Toshiaki MISUMI

要旨

当研究所は、平成 20年度から实施されている沿岸海域環境に係る II型共同研究に参加してきており、このうち平成 26〜28年度の課題「沿岸海域環境の物質循環現状把握と変遷解析に関する研究」において、宮崎県沿岸の2地点で調査を行った。その結果、COD の多くを溶存性有機物が占めること、夏場に植物性プランクトンの増殖が認められること等が分かった。また、過去の常時監視データの解析から、貧酸素水塊が発生していないこと等が分かった。

キーワード: COD、溶存性有機物、植物プランクトン、貧酸素水塊

はじめに

平成 20年度から实施されている沿岸海域環境に係る II型共同研究の一環である課題「沿岸海域環境の物質循環現状把握と変遷解析に関する研究」（研究期間平成 26〜28年度）に参加し、宮崎県沿岸の2地点で、冬季と夏季に採水を行い、COD関連有機物指標と栄養塩類等を測定し、測定項目間の関係及び季節変化等について検討した。また、同じ2地点において、これまでの II型共同研究で行った経年変化解析に準じて、本県常時監視結果データを用いた解析を行ったので、これらについて報告する。

方法

1 調査方法の概要

2）調査項目

①気温、②水温、③pH、④塩化物イオン、⑤EC、⑥BOD、⑦COD、⑧D-COD（溶存性 COD、試料をガラス繊維フィルターでろ過したろ液の COD）
のことも）、⑨P-COD(懸濁性 COD, COD から D-COD を差し引いたもの), ⑩DOC(溶存性有機炭素, 試料をガラス繊維フィルターでろ過した液を,塩酸添加窒素曝気処理して無機溶存性炭素を除去した後測定した TOC のこと), ⑪POC(懸濁性有機炭素, 試料をガラス繊維フィルターでろ過したフィルター中の有機炭素), ⑫DOC+POC, ⑬Chl a(クロロフィル a), ⑭DIN(NO₃⁻+N0₂⁻+NH₄⁺+N), ⑮DTN(全窒素), ⑯DIP(PO₄^-P), ⑰DTP(全リン), ⑱SiO₂

3）分析方法等

a）項目①及び②

項目①及び②については, 採水実施機関（公益財団法人 宮崎県環境科学協会）が測定した。

b）項目③～⑥

項目③～⑥については, 当研究所でそれぞれ以下の方法で分析した。

③pH：ガラス電極法 ④EC：電気伝導度計による測定 ⑤塩化物イオン：イオンクロマトグラフ法 ⑥BOD：JIS 法(K0102:2016). なお, BOD 値は 3 日後の溶存酸素量から求めた. ⑦, ⑧

ｃ）項目⑦～⑱

項目⑦～⑱については, 国立研究開発法人 国立環境研究所へ冷凍した試料を送り同研究所において分析した。

分析法は同研究所資料に記載のとおり。

3 常時監視結果を用いた解析

2 の 1) に記載の 2 地点について, 常時監視結果を用いて以下の解析を行った。

1) 過去 3 年間の底層 DO 値

平成 25~27 年度の四半期毎の底層 DO 値のデータを集計し, 貧酸素水塊発生の有無をみた。

2) COD の経年変化

沿岸海域環境に係る II 型共同研究前々課題報告書（平成 23 年 3 月）での COD 経年変化報告に,データを追加し, 昭和 56～平成 27 年度の推移をみた。

3) COD, DTN 及び DTP の季節変動

平成 25~27 年度の四半期毎(COD については, 毎月) のデータを集計し, 季節変動の有無をみた。

結果

1 COD 関連有機物指標と栄養塩類等調査結果

1) 気温, 水温, pH 等

本調査で採水した試料の気温, 水温, pH 等の分析結果を表 1 に示す. 沖田川河口東 750m の方が五ヶ瀬川導流堤東 750m より水温, 塩化物イオン及び EC が高めになる傾向にあり, 流入河川の影響を受けているものと考えられた。

2) COD 等関連項目

本調査で採水した試料の COD 等関連項目の分析結果を表 2 に示す.

BOD は全て高い値だった. また, BOD 及び COD のどちらも 2 地点間で大差なかった.
表1 気温、水温、pH等の結果

<table>
<thead>
<tr>
<th>採水地点名</th>
<th>採水年月日</th>
<th>気温（℃）</th>
<th>水温（℃）</th>
<th>pH</th>
<th>塩化物イオン(g/L)</th>
<th>EC (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>五ヶ瀬川導流堤東750m</td>
<td>H27.8.28</td>
<td>27.0</td>
<td>25.0</td>
<td>8.2</td>
<td>13.0</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>H28.1.26</td>
<td>10.1</td>
<td>16.0</td>
<td>8.3</td>
<td>15.0</td>
<td>43.2</td>
</tr>
<tr>
<td></td>
<td>H28.8.4</td>
<td>29.0</td>
<td>24.0</td>
<td>8.2</td>
<td>17.0</td>
<td>46.4</td>
</tr>
<tr>
<td></td>
<td>H29.1.13</td>
<td>9.5</td>
<td>16.5</td>
<td>8.1</td>
<td>19.8</td>
<td>50.9</td>
</tr>
<tr>
<td>沖田川河口東750m</td>
<td>H27.8.28</td>
<td>27.2</td>
<td>25.5</td>
<td>8.2</td>
<td>16.0</td>
<td>55.4</td>
</tr>
<tr>
<td></td>
<td>H28.1.26</td>
<td>9.8</td>
<td>18.3</td>
<td>8.3</td>
<td>19.0</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>H28.8.4</td>
<td>28.3</td>
<td>25.8</td>
<td>8.2</td>
<td>19.1</td>
<td>49.1</td>
</tr>
<tr>
<td></td>
<td>H29.1.13</td>
<td>9.3</td>
<td>16.6</td>
<td>8.2</td>
<td>19.5</td>
<td>50.9</td>
</tr>
</tbody>
</table>

*BODは当研究所による分析値。他は国立研究開発法人 国立環境研究所による分析値

表2 H27年8月～29年1月の夏季と冬季のBOD・COD関連項目*
（単位はChl aはμg/L、他は全てmg/L）

<table>
<thead>
<tr>
<th>採水地点名</th>
<th>採水年月日</th>
<th>BOD</th>
<th>COD</th>
<th>D-COD</th>
<th>P-COD(DOC-D-COD)</th>
<th>DOC</th>
<th>POC</th>
<th>DOC+POC</th>
<th>Chl a</th>
</tr>
</thead>
<tbody>
<tr>
<td>五ヶ瀬川導流堤東750m</td>
<td>H27.8.28</td>
<td><0.5</td>
<td>1.70</td>
<td>1.40</td>
<td>0.30</td>
<td>0.98</td>
<td>-</td>
<td>-</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>H28.1.26</td>
<td><0.5</td>
<td>1.20</td>
<td>1.10</td>
<td>0.10</td>
<td>0.91</td>
<td>0.23</td>
<td>1.15</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>H28.8.4</td>
<td>0.5</td>
<td>1.51</td>
<td>1.30</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>H29.1.13</td>
<td><0.5</td>
<td>2.11</td>
<td>1.41</td>
<td>0.70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.84</td>
</tr>
<tr>
<td>沖田川河口東750m</td>
<td>H27.8.28</td>
<td>0.5</td>
<td>2.00</td>
<td>1.90</td>
<td>0.10</td>
<td>0.97</td>
<td>-</td>
<td>-</td>
<td>2.93</td>
</tr>
<tr>
<td></td>
<td>H28.1.26</td>
<td><0.5</td>
<td>1.10</td>
<td>1.00</td>
<td>0.10</td>
<td>1.18</td>
<td>0.23</td>
<td>1.41</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>H28.8.4</td>
<td><0.5</td>
<td>2.81</td>
<td>1.30</td>
<td>1.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>H29.1.13</td>
<td><0.5</td>
<td>1.21</td>
<td>1.21</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.40</td>
</tr>
</tbody>
</table>

*BODは当研究所による分析値。他は国立研究開発法人 国立環境研究所による分析値

表3 H27年8月～29年1月の夏季と冬季の栄養塩類**（単位はmg/L）

<table>
<thead>
<tr>
<th>採水地点名</th>
<th>採水年月日</th>
<th>DIN</th>
<th>DTN</th>
<th>DIP</th>
<th>DTP</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>五ヶ瀬川導流堤東750m</td>
<td>H27.8.28</td>
<td>0.183</td>
<td>0.280</td>
<td>0.009</td>
<td>0.009</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td>H28.1.26</td>
<td>0.145</td>
<td>0.312</td>
<td>0.011</td>
<td>0.017</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>H28.8.4</td>
<td>0.011</td>
<td>0.163</td>
<td>0.000</td>
<td>0.008</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>H29.1.13</td>
<td>0.085</td>
<td>0.196</td>
<td>0.007</td>
<td>0.011</td>
<td>1.63</td>
</tr>
<tr>
<td>沖田川河口東750m</td>
<td>H27.8.28</td>
<td>1.072</td>
<td>1.165</td>
<td>0.004</td>
<td>0.006</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>H28.1.26</td>
<td>0.692</td>
<td>0.863</td>
<td>0.008</td>
<td>0.013</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>H28.8.4</td>
<td>0.050</td>
<td>0.266</td>
<td>0.001</td>
<td>0.008</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>H29.1.13</td>
<td>0.069</td>
<td>0.265</td>
<td>0.008</td>
<td>0.012</td>
<td>0.57</td>
</tr>
</tbody>
</table>

**全て国立研究開発法人 国立環境研究所による分析値
CODは、一部を除き夏季の方が冬季より高くなる傾向がみられた。さらに、CODの多くをD-CODが占め、一部のデータではあるがPOCよりDOCが高くなる傾向がみられた。このことは、CODの多くを溶存性の有機物が占める傾向にあることを意味しており、全国の状況とほぼ同様である。

Chl aについては、夏季の方が冬季より高くなる傾向が顕著にみられ、夏季の植物プランクトン増殖を示すものと考えられた。

今後、POCを含めたデータを蓄積し、CODと植物プランクトンの関係等についても引き続き検討する必要がある。

3) 栄養塩類

本調査で採取した試料の栄養塩類の分析結果を表3に示す。

栄養塩類については、全体的に沖田川河口東750mの方が五ヶ瀬川導流堤東750mより高めの値になる傾向がみられた。DTN及びDTP中の溶存性無機成分割合は、調査時期及び地点により変動が大きく、現段階では一定の傾向を把握することは困難だった。栄養塩類についても、今後データを蓄積し、引き続き検討する必要がある。

2 常時監視結果を用いた解析結果
1) 過去3年間の底層DO値

五ヶ瀬川導流堤東750mの平成25〜27年度の底層DO値を図2に示す。底層DO値は6.1〜8.4（平均7.2）mg/Lであり、若干の変動は見られるものの貧酸素水塊の発生は認められなかった。なお、沖田川河口東750mにおいては、底層DO値の測定は行われていない。

2) CODの経年変化

調査対象2地点の昭和56〜平成27年度のCOD75%値の推移を図3及び4に示す。

どちらの地点においてもCOD増加の兆候はみられなかった。
3）COD，DTN 及び DTP の季節変動
調査対象 2 地点の平成 25～27 年度の COD，DTN 及び DTP を図 5～8 に示す。
COD について図 5 及び 7 から変動をみると 2 地点とも概ね夏季の方が冬季より高くなる傾向がみられた。
一方，栄養塩類の指標として解析した DTN 及び DTP については，2 地点とも調査時期による変動は大きが，変動には季節による明確な違いはみられなかった．また，DTN については沖田側河口東 750m の方が五ヶ瀬川導流堤東 750m より高い値となった．これらは，各流入河川による影響を受けているためではないかと考えられた．
図 7 沖田川河口東 750m の H25～27 年度の COD

図 8 沖田川河口東 750m の H25～27 年度の全窒素及び全リン

まとめ

1 五ヶ瀬川導流堤東 750m 及び沖田川河口東 750m の 2 地点において、平成 27 年度から 28 年度の夏季と冬季に採水・分析を行った。分析結果から、概略 COD の多くを溶存性の有機物が占める傾向がみられた。また、Chl a の分析値から、夏季における植物プランクトン増殖が認められた。栄養塩類濃度については、沖田川河口東 750m の方が五ヶ瀬川導流堤東 750m より高い値となる傾向がみられた。また、DTN 及び DTP に占める溶存性無機成分割合は、変動が大きく一定の傾向の把握は困難であった。

2 過去の常時監視結果のデータを解析し、貧酸素水塊は発生していないことを確認した。また、COD に上昇の兆候はみられなかった。COD については、夏季の方が冬季より高くなる傾向がみられた。
当研究所は、平成 29 年度以降の本Ⅱ型共同研究課題にも引き続き参加を予定している。沿岸海域環境については未解明の点が多いが、本県についても同様である。今後とも本Ⅱ型共同研究結果を蓄積し、本県沿岸海域環境に係る知見提供のため検討を進める予定である。

文献

1) 牧秀明：茨城県沿岸海域公共用水域環境基準点における栄養塩類 COD に関する有機物項目について、Ⅱ型共同研究報告書例（国立環境研究所）、（2017 年 3 月）

2) 宮崎県：平成 27 年度大気・水質（公共用水域及び地下水）測定結果 http://eco.pref.miyazaki.lg.jp/sokuteikekka/27/koukyouyousuII/index27.htm（2015）等

3) 牧秀明他：環境部局による海域の調査研究の在り方について、第 42 回環境保全・公害防止研究発表会講演要旨集、（2015）
九州・沖縄・山口地方酸性雨共同調査研究（第Ⅳ期）について
岡田守道 内村雅和 赤﨑いずみ 三角敏明
[九州衛生環境技術協議会大気分科会，山口県環境保健センター]

Study of acid rain in Kyushu region and Okinawa prefecture and Yamaguchi prefecture
Morimichi OKADA, Masakazu NAKAMURA, Izumi AKAZAKI, Toshiaki MISUMI

要旨
九州・沖縄・山口地方で実施された湿性沈着調査（平成14～26年度）及び乾性沈着調査（平成15～26年度）のデータを用いて解析を行った。本地方のpHの平均値は4.57～4.77の範囲にあり，平成17年度までは全国平均値より高かったが，平成24年度以降は全国平均値を下回った。湿性沈着のNOx濃度は九州北部で最も高く，大陸からの季節風が吹く冬季に増加傾向にあることから，NOx排出量の増加が懸念される。湿性沈着のnss-SO₄²⁻濃度は，平成19年度から22年度までは減少傾向にあり，これは大陸のSO₂排出量の変動と連動した挙動であったが，平成23年度以降濃度が逆に増加していることから，活動が活発化している桜島等の火山の影響を受けていていることが示唆された。

キーワード：酸性雨，湿性沈着，乾性沈着，越境汚染

はじめに

東アジア地域では近年の経済成長に伴って大気汚染物質の排出量が増加しており，我が国への越境汚染の影響が懸念されている。特に九州・沖縄・山口地方（以下「本地方」という。）は越境汚染の影響を受けやすい地域であると考えられることから，九州地方知事会の政策連合項目として「酸性雨観測体制の整備の連携」が選定された。この取組みの一環として，九州衛生環境技術協議会大気分科会と山口県環境保健センターで酸性雨の共同研究を行い，当所がそのとりまとめを行っている。これまで第Ⅰ期調査（平成14～18年度データ解析），第Ⅱ期調査（平成14～20年度データ解析），第Ⅲ期調査（平成14～23年度データ解析）を行ってきた。今回，第Ⅳ期調査として平成14～26年度のデータを解析したのでその結果について報告する。

調査方法

1 地域区分
湿性沈着の降水量，nss(non sea salt)-SO₄²⁻，NOx，NH₄⁺及びnss-Ca²⁺濃度についてクラスター分析を行い，本地方の測定地点を，「九州北部」（山口，佐賀，太宰府，佐賀），「九州西部」（長崎，諫早，佐賀，宇土）,「九州中部」（阿蘇，大分久住）,「九州南部」（人吉，宮崎，鹿児島）及び「沖縄」（大里）の5つの地域に分けた。

2 濃性沈着
降水時開放型捕集装置を用いて原則1週間単位で採取した試料について，降水率，pH，電気伝導度及びイオン成分濃度を測定した。

3 乾性沈着
フィルターパック（4段ろ紙）法により原則1週間単位で採取した試料について，イオン成分濃度を測定した。
調査結果及び考察

1 湿性沈着
地方の pH の平均値は、4.57(H26) ～ 4.77(H16)の範囲にあり、平成17年度までは全国平均値より高かったが、平成18年度から23年度は全国平均値と同程度若しくはやや低い値で推移した。平成24年度以降は全国平均値が上昇しているのに、本地方の平均値は低下の傾向にあった（図1）。地域ごとの経月変化では、年間にちなんだ沖縄が他の地域より pHが高い値で推移したが、季節では、すべての地域で冬季に低くなる傾向があった（図2）。

本地方の NO₃−濃度は、夏季に低く冬季に高くなる傾向があり、この変動は九州北部で最も大きく見られた（図3）。これは、nss-SO₄²−イオンや NH₄⁺イオンなどの他の成分イオンでも同様の傾向があり、また、地域別では九州北部で最も高く、南部に行くほど低くなる傾向があった（図4）。これは、大陸により近いほど降水が NO₃イオンを多く取り込んでいないものと考えられ、大陸からの影響が重要な因子であることが推察された。

本地方の nss-SO₄²−濃度は、平成19年度から22年度までは減少傾向にあり、また、平成21年度までは概ね全国平均値より低い傾向にあったが、
平成22年度以降は全国平均値よりも高くなり、経年変化も平成23年度以降は増加傾向となっており（図5）。

中国環境状況公報14)によると、中国では平成18年度頃をピークに二酸化硫黄の排出量が減少していることが分かる（図6）。nss-SO₄²⁻濃度の近年の増加傾向が、中国における二酸化硫黄年間排出量の経年変化と異なる挙動を示し、また、桜島の年間噴火回数15)（図7）と連動していることから、桜島や阿蘇山など、火山からの二酸化硫黄の排出に影響を受けるものと考えられた。

火山の影響がある場合、降水中でnss-SO₄²⁻やCl⁻の濃度上昇が考えられる。降水中のNa⁺とCl⁻の濃度比（Cl⁻/Na⁺）は、概ね海水比（1.164）と近い値になると考えられるが、火山の影響がある場合、Cl⁻濃度が上昇して、この濃度比が上昇すると考えられる。本地方において、火山から距離のある太宰府、諫早、宮崎及び大里ではこの濃度比が1.164より低いが、火山に近い鹿児島と阿蘇では1.164より高い値を示したことからも、火山の影響が考えられた（図8）。

2 乾性沈着

乾性沈着は本地方の8地点（山口、諫早、太宰府、宇土、大分久住、宮崎、鹿児島、大里）で実
施したが、測定年度にばらつきがあるため、地域ごとに分類せずにすべての測定地点別に解析を行った。

粒子状 NO₃ 濃度は、夏季に低く冬季に高くなる傾向があり、湿性沈着の経月変動と類似している（図 9）。また、地点毎にみると、湿性沈着と同様に太宰府で最も変動幅が大きかった。九州北部においては、地理的に大陸に近いことなどから粒子状の窒素化合物についても大陸からの移流の影響を受けていることが示唆された。

ガス状 SO₂ 濃度は、鹿児島で非常に高く、次いで宇土、大分久住の順で高かった。また、大里が最も低かった（図 10）。経月変化は、一部の地域で冬季から春季にかけて高くなる傾向がみられたが、鹿児島では年間を通じて濃度が高く、他の地域と異なる傾向であった（図 11）。これは、火山の影響を受けているためと考えられた。

まとめ

本地方では九州北部を筆頭に大陸からの越境汚染の影響を受けていることが示唆された。ここで、中国国内において平成 22 年頃から PM2.5 に係る問題などで大気環境への関心が高まり、現在最優先で大気汚染対策が進められていることが日本の統計資料から読み取れるため、大陸からの「寄与量」については今後は減少していくことも考えられる。

また、九州中部及び九州南部は最近活動が活発な状況になっている阿蘇山や桜島からの影響を受けていることも推察された。

今後も酸性雨や粒子状物質の成分分析などのモニタリングを継続し、越境汚染や火山からの影響に注視していく必要がある。
参考文献

1) 大原利真：東アジアにおける広域越境大気汚染モデリングの最新動向, 水環境学会誌, 35,6-9, (2012)
2) 環境省：酸性雨長期モニタリング報告書（平成15〜19年度）
3) 全国環境研協議会：酸性雨調査研究部会 第4次全国調査結果（平成15年度） 全国環境研会誌,30(2),2005
4) 全国環境研協議会：酸性雨調査研究部会 第4次全国調査結果（平成16年度） 全国環境研会誌,31(3),2006
5) 全国環境研協議会：酸性雨調査研究部会 第4次全国調査結果（平成17年度） 全国環境研会誌,32(2),2007
6) 全国環境研協議会：酸性雨調査研究部会 第4次全国調査結果（平成18年度） 全国環境研会誌,33(3),2008
7) 全国環境研協議会：酸性雨広域大気汚染調査研究部会 第4次全国調査結果（平成19年度）全国環境研会誌,34(3),2009
8) 全国環境研協議会：酸性雨広域大気汚染調査研究部会 第4次全国調査結果（平成20年度）全国環境研会誌,35(3),2010
9) 全国環境研協議会：酸性雨広域大気汚染調査研究部会 第5次全国調査結果（平成21年度）全国環境研会誌,36(3),2011
10) 全国環境研協議会：酸性雨広域大気汚染調査研究部会 第5次全国調査結果（平成22年度）全国環境研会誌,37(3),2012
11) 全国環境研協議会：酸性雨広域大気汚染調査研究部会 第5次全国調査結果（平成23年度）全国環境研会誌,38(3),2013
12) 全国環境研協議会：酸性雨広域大気汚染調査研究部会 第5次全国調査結果（平成24年度）全国環境研会誌,39(3),2014
13) 全国環境研協議会：酸性雨広域大気汚染調査研究部会 第5次全国調査結果（平成25年度）全国環境研会誌,40(3),2015
14) 中国環境状況広報 : http://jcs.mep.gov.ch/hjzl/
小丸川の底生動物相と水質

廣池勇太 1) 島田玲子 赤﨑いずみ 中山能久
溝添光洋 1) 中村公生 三角敏明

Zoo-benthos and Water Analysis of the Omaru River

Yuta HIROIKE, Reiko SHIMADA, Izumi AKAZAKI, Yoshihisa NAKAYAMA, Mitsuhiro MIZOZOE, Kimio NAKAMURA, Toshiaki MISUMI

要旨

平成27年度に小丸川の2地点（鬼神野（きじの）、神門（みかど））で水質理化学検査及び生物学的水質評価を行った。いずれも環境基準点ではないが、水質理化学検査では、神門のBODが河川のA類型に、それ以外は全てAA類型に、また、全窒素T-Nと全リンT-Pは湖沼のII類型にそれぞれ適合していた。生物学的水質評価は、平均スコア法（ASPT）によると鬼神野が「清水性」、神門が「やや清水性」と判定された。また、ASPTのほかに、Shannon-Wienerの多様度指数やSimpsonの多様度指数による解析を試みたところ、水環境及び生物多様性に優れていることが分かった。

キーワード：底生動物、水質理化学検査、生物学的水質評価、平均スコア法、生物多様度指数

はじめに

当研究所では、平成4年度から本県を流れる河川の水質について、水質評価方法の一つである底生動物を用いた生物学的水質評価を行っている。

特に河川水という限定された環境に生息する底生動物は、水質に敏感に反応するほか、河床構造や水深、河川周辺の環境など理化学検査では測ることができない調査地点の包括的な生物環境を示す。そのため、底生動物は当該水域の水質指標となり、理化学検査を補完することができると考えられる 2)。

平成27年度に行った小丸川の計2地点での調査概要を報告する。

方法

1 調査河川及び地点

小丸川は、宮崎県東臼杵郡椎葉村三丸岳（1,479m）に源を発し、渡川などを合せながら木城町を南北に貫流した後、下流で宮田川などを合せ日向灘に注ぐ。流域面積約474km²、幹川流路延長約75kmの一級河川である。

高城橋から神門までの区間は、ダム湖や地形の問題から調査を行うことが困難であったため、比較的平坦な鬼神野及び神門の2地点で調査した。

調査対象河川及び調査地点を図1に示す。
表1 調査地点の概要

<table>
<thead>
<tr>
<th>地点番号</th>
<th>地点名</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>St.1</td>
<td>鬼神野</td>
<td>小丸川上流域。瀬と淵が交互に繰り返される中間渓流型の河川形態。渓谷の中には巨大な岩が少なく目立つ。川岸（付近）に人頭大の石がある。全体的に砂の底質。</td>
</tr>
<tr>
<td>St.2</td>
<td>神門</td>
<td>小丸川上流域。美里町の中心部下流域で、中下流型の河川形態。大きな一枚岩が所々埋もれているほか、こぶし大〜人頭大の石も多く、表面は赤褐色の材で覆われている。底質は砂泥。</td>
</tr>
</tbody>
</table>

表2 各指標の概要

<table>
<thead>
<tr>
<th>1) 平均スコア法</th>
<th>b) Shannon-Wienerの多様度指数</th>
<th>c) 修正Shannon-Wienerの多様度指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ASPT = \frac{TS}{n})</td>
<td>(H' = -\sum_{i=1}^{S} \left(\frac{n_i}{N} \right) \ln \left(\frac{n_i}{N} \right))</td>
<td>(H'^* = H' + A = \frac{A}{2N + A})</td>
</tr>
<tr>
<td>数値</td>
<td>表現</td>
<td>数値</td>
</tr>
<tr>
<td>1≦ASPT<10</td>
<td>清水性</td>
<td>0≦H'</td>
</tr>
<tr>
<td>0≦H</td>
<td>清水性</td>
<td>0≦D</td>
</tr>
</tbody>
</table>

計算式

d) Pielouの均衡度指数
e) Simpsonの多様度指数
f) 対数逆Simpson指数

\(J' = \frac{H'}{H_{max}} \)

\(S = \) 種数
\(H_{max} = -S \times \frac{1}{S \times \ln(S)} = \ln S \)

\(D = 1 - \sum_{i=1}^{s} \left(\frac{n_i(n_i-1)}{N(N-1)} \right) \)

\(D' = \log \frac{1}{D} \)

2 調査年月日

平成 28年 3月 22日

3 調査方法

1) 水質理化学検査

河川水は流しで採水し、水素イオン濃度 pH、生物化学的酸素要求量 BOD、溶存酸素量 DO、浮遊物質量 SS、全窒素 TN、全栄 T-P、亜鉛 Zn、硝酸性窒素 NO₃-N 及び亜硝酸性窒素 NO₂-N について、昭和46年環境庁告示第59号、日本工業規格JIS K0102等に準拠して分析した。

2) 生物学的水質評価

底生生物は Dフレームネットを用い、環境庁及び国土交通省のマニュアル等を参考にし、瀬、淵、水際の植物付近などで採取した。

採取した底生生物の同定は、幼虫を対象として「日本産水生昆虫一科・属・種への検索」等及び図鑑や文献等を同定し、個体数も記録した。

同定結果に基づく生物学的水質評価は、表2に示す6つの方法を用いた。

a) 平均スコア法（ASPT）

平均スコア法は河川の水質状況を加え、周辺地域の状況も併せた総合的な河川環境の良好性を示す指標である。

ASPT 値は1から10の範囲にあり、1に近いほど汚濁の度合いが大きく、周辺の開発が進むなど人為影響の影響が大きい河川とされ、逆に10に近いほど汚濁の度合いが小さく、自然状態に近いなど人為影響の少ない河川とされる。

ASPT 値の算出は環境庁水質保全局から平成12年3月に出された「平成11年度水生生物等による水環境評価手法検討調査」のスコアを用いた。

また、ASPT 値に関する研究報告等では、「ASPT 値が8以上であれば水質も良好であり、かつ周辺には自然要素が多く残された水環境」と判
b）Shannon-Wiener の多様度指数 (H')

H' は、情報量理論に基づく指数で、H 値の下限値は 0、上限値は種数によって変わる。底生動物の種数が多く、かつ各種の均等度が高いほど大きい値となる。なお、対数は自然対数を用いた。

c）修正 Shannon-Wiener の多様度指数 (H^*)

H' は種数が同じでも、ある種類の個体数が 1 個体だった場合に小さく算定されるため、これを修正したものが Shannon-Wiener の多様度指数 H^* である。H^* 値が 3 以上を清水性、1 以上 3 未満を中汚染水性、1 未満を強汚染水性とする Cairns の区分に従って評価した（表 2）。なお、H^* 値と同様、自然体数を用いた。

d）Pielou の均衡度指数 (J')

J' は、H' を用いて採取された種数の多さと均等度を表す。J' 値は 0 から 1 の範囲にあり、底生動物が偏って生息している場合は 0 に近い値となり、均等に生息している場合は 1 に近い値となる。

J' 値を求める数式は、多くの論文で H' が用いられているが、本稿では 1 個体の影響を小さくするために H^* を用いた。

e）Simpson の多様度指数 (D)

D は確率論に基づく指数で、D 値は 0 から 1 の範囲にあり、1 に近いほど多様度が高くなる。

f）対数逆 Simpson 指数 (D^*)

D^* は前項の D を用いて定義され、D^* 値は上限はなく、大きいほど多様度が高くなる。D^* 値は 1 以上の値が取れるので、0 から 1 までの D^* よりも河川間の比較には優れていると考えられている。なお、対数は常用対数である。

結果と考察

表 3 理化学検査結果

<table>
<thead>
<tr>
<th>調査地点</th>
<th>調査年月日</th>
<th>水温（℃）</th>
<th>pH</th>
<th>BOD（mg/L）</th>
<th>DO（mg/L）</th>
<th>SS（mg/L）</th>
<th>T-N（mg/L）</th>
<th>T-P（mg/L）</th>
<th>硝酸性窒素及び亜硝酸性窒素（mg/L）</th>
<th>亜鉛（mg/L）</th>
<th>重亜鉛（mg/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>St.1 鬼神野(AA)</td>
<td>平成28年3月22日</td>
<td>11.4</td>
<td>7.4</td>
<td>1.0</td>
<td>11</td>
<td><1</td>
<td>0.14</td>
<td>0.008</td>
<td>0.17</td>
<td><0.005</td>
<td></td>
</tr>
<tr>
<td>St.2 神門(AA)</td>
<td>14.6</td>
<td>7.4</td>
<td>1.1</td>
<td>10</td>
<td><1</td>
<td>0.19</td>
<td>0.008</td>
<td>0.21</td>
<td><0.005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

調査地点の括弧内は当該地点での河川環境基準の類型を表す。
高いものと考えられた。

表4 生物学的水質評価結果

<table>
<thead>
<tr>
<th>指標</th>
<th>St.1 鬼神野</th>
<th>St.2 神門</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPT</td>
<td>8.0</td>
<td>7.8</td>
</tr>
<tr>
<td>H'</td>
<td>3.3</td>
<td>3.2</td>
</tr>
<tr>
<td>H*</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>J'</td>
<td>0.84</td>
<td>0.80</td>
</tr>
<tr>
<td>D</td>
<td>0.93</td>
<td>0.94</td>
</tr>
<tr>
<td>D*</td>
<td>1.17</td>
<td>1.22</td>
</tr>
</tbody>
</table>

図2 St.1 鬼神野

2）St.2 神門

調査地点の写真を図3に示す。

宮崎県美郷町の中心部の下流で、やや土地が開けており、流れが緩やかな地点であった。川岸には植物が繁茂し、右岸には淵が形成されており落葉が堆積していた。河床には埋もれた大きな岩や人頭大程度の石のほか砂泥が多く、その表面は赤褐色のコケで覆われていた。

底生動物は総科数22、総個体数647、総スコアは171でASPT値は7.8（やや清水性）となったものの、H*値では清水性と評価された。ASPT値とH*値による評価が異なった理由として、1個体だけ採取された底生動物の割合が鬼神野よりも大きかったことが考えられる。

カゲロウ目、カワゲラ目、トビケラ目のスコア設定生物は、それぞれ7科、3科、5科が出現していた。

トビケラ目は、鬼神野と同様に、シマトビケラ科とナガレトビケラ科以外の個体数が多く、特に携巢性のトビケラが多く採取されていた。

また、D値とD*値から多様な底生動物が生息していることが分かるが、個体数が少なく均一性が低くなったことが鬼神野とのJ値の差になったと考えられた。

図3 St.2 神門

まとめ

小丸川の鬼神野と神門の水質について理化学検査と生物学的水質評価を実施した。その結果、両者に差異はみられず、どちらの地点も良好な水質であった。

採取された生物では、渓流の河川形態をしていた鬼神野でカワゲラ目が多く、流れの緩やかだった神門では携巢性のトビケラ目が多く生息していた。

文献

1）森下郁子：川の健康診断 清冽な流れを求めて 日本放送出版協会、12、(1991)
2）森下郁子：指標生物学 生物モニタリングの考え方（普及版）、9-12、(1986)
3）環境庁水質保全局：大型底生動物による河川水環境評価マニュアル、(1996)
4）国土交通省水管理・国土保全局河川環境科：平成18年度版 河川水辺の国勢調査基本調査 マニュアル[河川版]（底生動物調査編）、(2012)
5）川合禎次共編：日本産水生昆虫一科・属・種への検索一、東海大学出版会、(2005)
6）川合禎次編集：日本産水生昆虫検索図説、東海大学出版会、(1985)
7）石田昇三、石田勝義、小島圭三、杉村光俊：日本産トンボ幼虫・成虫検索図説、東海大学出版会、(2004)
8) 富川光, 森野浩: 日本産淡水ヨコエビ類の分
類と見分け方, タクサ 日本動物分類学会誌, 32, 39-51, (2012)
9) 野崎隆夫: 大型底生動物を用いた河川環境評
価―日本版平均スコア法の再検討と展開―,
水環境学会誌, 35(4), 118-121, (2012)
10) 山崎正敏, 野崎隆夫, 藤澤明子, 小川剛: 河川の生物学的水域環境評価基準の設定に関し
る研究―全国公害研協議会環境生物部会共同
研究成果報告―, 全国公害研会誌, 21(3), 114-
145, (1996)
11) 森谷清樹: 多様度指数による水域環境の生態
学的評価, 用水と廃水, 18(6), 729-748, (1976)

<table>
<thead>
<tr>
<th>目</th>
<th>科</th>
<th>属</th>
<th>種</th>
<th>ASPTスコア</th>
<th>基耐性点</th>
<th>基耐性点</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>蜉蝣目 (カゲロウ目)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>蜻蛉目 (トンボ目)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ヒラタカゲロウ科 (カゲロウ目)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>マダラカゲロウ科 (カゲロウ目)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>コカゲロウ科</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>フタオカゲロウ科 (カゲロウ目)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>サナエトンボ科 (カゲロウ目)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表5 採取された生物一覧
表5 (続き)採取された生物一覧

<table>
<thead>
<tr>
<th>目</th>
<th>科</th>
<th>属</th>
<th>種</th>
<th>取得個体数</th>
<th>ASPTスコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>カワゲラ目</td>
<td>オオヤマカワゲラ科</td>
<td>オオヤマカワゲラ属</td>
<td>オオヤマカワゲラ属の一種</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>カミムラカワゲラ科</td>
<td>カミムラカワゲラ属</td>
<td>カミムラカワゲラ属の一種</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>フタツメカワゲラ科</td>
<td>フタツメカワゲラ属</td>
<td>フタツメカワゲラ属の一種</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>モンカワゲラ科</td>
<td>モンカワゲラ属</td>
<td>モンカワゲラ属の一種</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>フラクカワゲラ科</td>
<td>フラクカワゲラ属</td>
<td>スキマリカワゲラ属</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>アミメカワゲラ科</td>
<td>アミメカワラ属</td>
<td>アミメカワラ属の一種</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ミドリカワゲラ科</td>
<td>ミドリカワゲラ属</td>
<td>ミドリカワゲラ属の一種</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>カナカワゲラ科</td>
<td>カナカワゲラ属</td>
<td>カナカワゲラ属の一種</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>カンギョウカワゲラ科</td>
<td>カンギョウカワゲラ属</td>
<td>カンギョウカワゲラ属の一種</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>シマトビキラ科</td>
<td>シマトビキラ属</td>
<td>シマトビキラ属の一種</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>カクツツトビキラ科</td>
<td>カクツツトビキラ属</td>
<td>カクツツトビキラ属の一種</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ガランカワトビキラ科</td>
<td>ガランカワトビキラ属</td>
<td>ガランカワトビキラ属の一種</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>カリガガガンボ科</td>
<td>カリガガガンボ属</td>
<td>カリガガガンボ属の一種</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ヤフサガガンボ科</td>
<td>ヤフサガガンボ属</td>
<td>ヤフサガガンボ属の一種</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ヨコエビ科</td>
<td>ヨコエビ属</td>
<td>ヨコエビ属の一種</td>
<td>116</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>ユミ科</td>
<td>ユミ科の一種</td>
<td>ユミ科の一種</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ユミ科</td>
<td>ユミ科の一種</td>
<td>ユミ科の一種</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ドゲッシア科</td>
<td>ドゲッシア属</td>
<td>ドゲッシア属の一種</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ハッサン目 (ワズムシ目)</td>
<td>ハッサン目</td>
<td>ハッサン目の一種</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ココエビ科</td>
<td>ココエビ属</td>
<td>ココエビ属の一種</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

総個体数: 1,147
総科数: 116
総スコア: 116
ASPT値: 8.0
川内川の底生動物相と水質

有識真奈美 萩原摩耶 廣池勇太 中村公生 溝添光洋
赤崎いずみ 島田玲子 三角敏明

Zoo-benthos and Water Analysis of the Sendai River

Manami ARIKADO, Maya HAGIHARA,Yuta HIROIKE, Kimio NAKAMURA, Mitsuhiro MIZOZOE,Izumi AKAZAKI, Reiko SHIMADA,Toshiaki MISUMI

要旨

平成28年度に川内川の3地点（坂下橋（さかしたはし）, 飯野（いいの）, 真幸堰（まさきぜき））で水質理化学検査及び生物学的水質評価を行った。水質理化学検査では, 環境基準が定められている項目では全ての地点でA類型に適合していた。また, 全窒素 T-N と全りん T-P は下流ほど高い値であった。生物学的水質評価では, 平均スコア法（ASPT）によると, 坂下橋で「とても良好」, 飯野と真幸堰では「良好」と評価された。また, 平均スコア法のほかに EPT 指数法による比較を行った結果, 3地点とも良好な河川環境と考えられたが, 数値は下流にいくほど減少傾向にあった。

キーワード：底生動物, 水質理化学検査, 生物学的水質評価, 平均スコア法, EPT 指数法

はじめに

当研究所では, 平成4年度から本県を流れる河川の水質理化学検査及び生物学的水質評価を実施している。水質理化学検査は, 採水した瞬間の水の状態を知ることができるのに対し, 底生動物による生物学的水質評価は, 数週間や数ヶ月単位の長い期間の水質や水環境の状態を知ることができる。平成28年度に行った, えびの市を流れる川内川の3地点での調査結果を報告する。

方法

1 調査河川及び地点

川内川は, 九州山地の白髪岳(1,417m)に源を発し, えびの市街地及び鹿児島県の川内平野を貫流し, 東シナ海に注ぐ。流域面積約1,600km², 幹川流路延長約137km の一級河川である1)。本県では, えびの市を横断して川内川が流れおり, えびの市西部から鹿児島県へと流れている。鹿児島県県境にある亀沢橋が環境基準点となっており, 鹿児島県より上流で, 流入する河川を含めてA類型に指定されている2)。河川の県内上流部はクルソン峡等の豊かな自然に恵まれている。中流部は九州自動車道や宮崎自動車道が開通しており, 交通の要衝となっている。下流部は, 河床安定と平常水位を確保するために, 昭和54年度に可動堰の真幸堰が作られている。今回の調査地点は, 上流部, 中流部, 下流部にそれぞれ1地点ずつ設定した。場所は図1に示す。
年月日
平成28年11月15日

調査方法
1) 水質理化学検査
河川水は流心で採水し、水素イオン濃度 pH、溶存酸素量 DO、生物化学的酸素要求量 BOD、浮遊物質量 SS、硝酸性窒素及び亜硝酸性窒素、全窒素 T-N、全リン T-P、全亜鉛、ノニルフェノールについて、昭和46年環境庁告示第59号、日本工業規格JIS K0102等に準拠して分析した。
2) 生物学的水質評価
底生動物の採取は「河川水辺の国勢調査マニュアル」を参考にし、1地点につき3ポイント選び、それぞれDフレームネットで採取を行った。採取したサンプルはポイントによる区別はせずに1つにまとめ、1地点のサンプルとした。
採集した底生動物の分類及び同定は、体長2mm以上の幼虫を対象として「日本産水生昆虫—種への検索—」などの図鑑や文献等を使い同定し、あわせて個体数も記録した。
得られた結果を用いて、平均スコア法 （ASPT）で河川水質の良好性を調べた。また、EPT指数法を用いて河川環境の考察を行った。

a) 平均スコア法（ASPT）
底生動物は科ごとに1から10のスコア値が与えられており、10に近いほど汚濁耐性がなくきれいな川に生息する傾向のある生物であり、反対に1に近いほど汚濁耐性があり良好でない環境でも生息することができる生物である。出現した生物のスコア値を全て足して、出現した生物の科数で割った値がASPT値であり、10に近いほど良好な河川であるとされている。このとき、スコア値が与えられていない生物は計算から除外した。スコア値は、環境庁水・大気環境局から平成29年3月に出された「水生生物による水質評価法マニュアル—日本版平均スコア法—」のスコア表を用いた1)。計算方法と評価の概要を表1に示す。
b) EPT指数法（EPT指数及びEPT%）
カゲロウ目（Ephemeroptera）、カワガラ目（Plecoptera）、トビケラ目（Trichoptera）は、水質や河川環境の変化に特に敏感だとされている。EPT指数は、この3目の種類のみを対象に水質の良好性を評価する手法である。3目の種数の合計が大きいほど水質が良いことを示し、30を越えたから良好な河川環境といえる。EPT%は、カゲロウ目、カワガラ目、トビケラ目それぞれの採取された種類数をEPT指数で割った値であり、得られた値により具体的な河川環境を評価する。各生物について、カゲロウ目は流速や底質などの水中環境の多様性、カワガラ目は直接的な水質の善し悪しや大きさの石の有無や量、トビケラ目は川底の安定性や植物などの河川の周辺を含む河川環境全体の多様性を反映する傾向がある12)。EPT指数法の式を表1に示す。

結果と考察
各地点の水質理化学検査結果を表2に、生物学的水質評価結果を表3に示す。また、生物計数結果を表4に、各地点の写真を図2から4に示し、各地点のEPT%の円グラフを図5に示す。

1) 水質理化学検査結果
すべての調査地点でpH、DO、BOD及びSSは河川の環境基準A類型に適合していた。硝酸性窒素及び亜硝酸性窒素も、環境基準値10mg/Lを下回る良好な結果であった。富栄養化の要因の一つとして知られているT-N、T-Pは、下流側にいくに従って高くなる傾向がみられた。原因として、調査地点の隣接地点及び周辺に交通や家屋があることが考えられ、調査地点までの間にわたり市の市街地を通過していることなどから、施肥や生活排水などの人为的影響があると考えられた。水生生物の生息状態の適応性に関する河川の類型はされ
表２ 各地点の水質理化学検査結果

<table>
<thead>
<tr>
<th>調査地点</th>
<th>水温</th>
<th>pH</th>
<th>DO</th>
<th>BOD</th>
<th>SS</th>
<th>硝酸性窒素及び亜硝酸性窒素</th>
<th>T-N</th>
<th>T-P</th>
<th>全亜鉛</th>
<th>ノニルフェノール</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>℃</td>
<td></td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
</tr>
<tr>
<td>St.1 坂下橋</td>
<td>15.5</td>
<td>7.3</td>
<td>9.6</td>
<td><0.5</td>
<td><1</td>
<td>0.4</td>
<td>0.38</td>
<td>0.007</td>
<td><0.003</td>
<td><0.00006</td>
</tr>
<tr>
<td>St.2 飯野</td>
<td>16.8</td>
<td>7.6</td>
<td>10</td>
<td><0.5</td>
<td><1</td>
<td>0.8</td>
<td>0.81</td>
<td>0.026</td>
<td><0.003</td>
<td><0.00006</td>
</tr>
<tr>
<td>St.3 真幸堰</td>
<td>18.0</td>
<td>7.5</td>
<td>9.4</td>
<td>0.5</td>
<td>1</td>
<td>1.2</td>
<td>1.3</td>
<td>0.050</td>
<td><0.003</td>
<td><0.00006</td>
</tr>
</tbody>
</table>

表３ 各地点の生物学的水質評価結果

<table>
<thead>
<tr>
<th>地点名</th>
<th>St.1 坂下橋</th>
<th>St.2 飯野</th>
<th>St.3 真幸堰</th>
</tr>
</thead>
<tbody>
<tr>
<td>優占科1</td>
<td>コカゲロウ科</td>
<td>コカゲロウ科</td>
<td>コカゲロウ科</td>
</tr>
<tr>
<td>優占科2</td>
<td>マダラカゲロウ科</td>
<td>マダラカゲロウ科</td>
<td>ガガンボ科</td>
</tr>
<tr>
<td>優占科3</td>
<td>シマトビケラ科</td>
<td>シマトビケラ科</td>
<td>イトミミズ科</td>
</tr>
<tr>
<td>ASPT値</td>
<td>7.5</td>
<td>7.3</td>
<td>7.1</td>
</tr>
<tr>
<td>EPT指数</td>
<td>(27, 7, 10)</td>
<td>(20, 4, 12)</td>
<td>(18, 0, 13)</td>
</tr>
</tbody>
</table>

2）生物学的水質評価結果

1）St.1 坂下橋（図2）

カルシウム塩より1km程下流にわたった場所で、コンクリートで出来た小さな堰を通過している。ここでは、大いに直径50cm程度の石が散在していた。浮き石が多く、所々で白波が立っていた。

ASPT値は7.5で、「とても良好」な水質であると評価された。EPT指数は44で良好な河川環境であることが示唆された。特に2年以上の期間をかけて成虫になる多年生のオオヤマカワガラが複数匹採取されたことから、採取を行った日より前の長い期間においても良好な水質が保たれていたことが示唆された。EPT％は、カゲロウ目が61％と最も高く、次にコカゲロウ科のイトミミズ科、次にシマトビケラ科、最後にガガンボ科の2種類が確認された。

2）St.2 飯野（図3）

麗橋の上流側で、コンクリートの護岸があり、少し離れれた場所に住宅が数軒ある。所々で白波が立っている。ASPT値は7.3で、「良好」な水質であると評価された。EPT指数は36で良好な河川環境であると考えられた。EPT％は、ガガンボ科が56％と最も高く、次にコカゲロウ科のイトミミズ科、次にシマトビケラ科、最後にガガンボ科の2種類が確認された。

3）St.3 真幸堰（図4）

通越の市街地を通過した地点である。堰の下流で採取を行った。川底は石や土で構成されていて、河原のように大きな石はなかった。川底は粘土が固まっているように見受けられる。水中環境は良好であると評価された。

ASPT値は7.1で、「良好」な水質であると評価された。EPT指数は31で他の地点より小さな値だが良好な河川環境と考えられた。EPT％は、カゲロウ目の58％とトビケラ目の42％で全体を占め、直接的に水質を反映するとされているカワガラ目が2％であった。原因として、川底が岩盤のように固まっていたことと、水が流れにくかったことである。この地点では、優占科にガガンボ科やイトミミズ科などの脚を持たない生物が見られたことが特徴的であった。

表2

<table>
<thead>
<tr>
<th>調査地点</th>
<th>水温</th>
<th>pH</th>
<th>DO</th>
<th>BOD</th>
<th>SS</th>
<th>硝酸性窒素及び亜硝酸性窒素</th>
<th>T-N</th>
<th>T-P</th>
<th>全亜鉛</th>
<th>ノニルフェノール</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>℃</td>
<td></td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
</tr>
<tr>
<td>St.1 坂下橋</td>
<td>15.5</td>
<td>7.3</td>
<td>9.6</td>
<td><0.5</td>
<td><1</td>
<td>0.4</td>
<td>0.38</td>
<td>0.007</td>
<td><0.003</td>
<td><0.00006</td>
</tr>
<tr>
<td>St.2 飯野</td>
<td>16.8</td>
<td>7.6</td>
<td>10</td>
<td><0.5</td>
<td><1</td>
<td>0.8</td>
<td>0.81</td>
<td>0.026</td>
<td><0.003</td>
<td><0.00006</td>
</tr>
<tr>
<td>St.3 真幸堰</td>
<td>18.0</td>
<td>7.5</td>
<td>9.4</td>
<td>0.5</td>
<td>1</td>
<td>1.2</td>
<td>1.3</td>
<td>0.050</td>
<td><0.003</td>
<td><0.00006</td>
</tr>
</tbody>
</table>
まとめ

川内川の 3 地点で水質理化学検査及び生物学的水質評価を行った。

水質理化学検査について, T-N, T-P が下流にいくにつれて高くなる傾向があった。これは河川が市街地を通過する間に施肥や生活排水などの人為的な影響を受けていていることが考えられた。その他の項目については, 地点ごとに顕著な差は見られず, 全体的に良好な結果であった。

生物学的水質評価について, ASPT 値は, 坂下橋で「とても良好」, 飯野と真幸堰で「良好」と評価され, 下流にいくにつれて小さな値となった。EPT 指数は各地点ともに 30 以上で良好な水質といえるが, 値は下流にいくにつれて減少傾向であった。EPT %を比較したところ, 各個地点もカゲロウ目が半分以上を占めていたのは共通していたが, トビケラ目とカワゲラ目の割合に違いが見られた。この違いは, 河川の底質の多様性が影響していると考えられた。

参考文献

1) 宮崎県 県土整備部河川課: 川内川水系えびの園域河川整備計画一県管理区間一, (2002)
2) 宮崎県：環境白書(平成 28 年度版), (2016)
生物計数結果

<table>
<thead>
<tr>
<th>目</th>
<th>科</th>
<th>スコア値</th>
<th>属</th>
<th>種</th>
<th>St.1</th>
<th>St.2</th>
<th>St.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>カワガラ目</td>
<td>カワガラ科</td>
<td>9</td>
<td>ナガレトビケラ属</td>
<td>キハダヒラタカゲロウ</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>ヒメヒラタカゲロウ属</td>
<td>8</td>
<td>キハダヒラタカゲロウ</td>
<td>エラブタマダラカゲロウ</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>ヒラタカゲロウ属</td>
<td>9</td>
<td>エラブタマダラカゲロウ</td>
<td>ヒラタカゲロウ</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>メダラカゲロウ科</td>
<td>8</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>マダラカゲロウ科</td>
<td>8</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>カワカゲロウ科</td>
<td>8</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>7</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>コカゲロウ科</td>
<td>6</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>カワカゲロウ科</td>
<td>8</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ミチヨウカゲロウ科</td>
<td>6</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ハマラカゲロウ科</td>
<td>6</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>マダラカゲロウ科</td>
<td>8</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>タニガワカゲロウ科</td>
<td>8</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>キハダヒラタカゲロウ科</td>
<td>8</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>クシゲマダラカゲロウ科</td>
<td>4</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>クシゲマダラカゲロウ科</td>
<td>4</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>クシゲマダラカゲロウ科</td>
<td>4</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>クシゲマダラカゲロウ科</td>
<td>4</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>クシゲマダラカゲロウ科</td>
<td>4</td>
<td>ヒメヒラタカゲロウ</td>
<td>ヒメヒラタカゲロウ</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

太陽目

<table>
<thead>
<tr>
<th>太陽目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

紫陽花目

<table>
<thead>
<tr>
<th>紫陽花目</th>
<th>サンタナカゲロウ科</th>
<th>8</th>
<th>ソバカスカゲロウ科</th>
<th>ソバカスカゲロウ科</th>
<th>2</th>
<th>17</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>サンタナカゲロウ科</td>
<td>8</td>
<td>ソバカスカゲロウ科</td>
<td>ソバカスカゲロウ科</td>
<td>2</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>
表4 生物計数結果（続き）

| トンボ目 (不均翅亜目) | チナエトンボ科 | ダビドサナエ属 | ダビドサナエ属の一種 | 4 | 4
| トンボ目 (奇翅目) | カリトンボ科 | オオカワトンボ属 | オオカワトンボ | 1 | 1
| トシトウ目 | ヘビトンボ科 | メガトンボ属 | メガトンボ | 2 | 2
| コウチュウ目 | ヒラタドロムシ科 | ヒラタドロムシ属 | ヒラタドロムシ属の一種 | 1 | 4
| 双魚目 | アブ科 | アブ属の一科 | 10 | 19
| 双魚目 | ブエ科 | ブエ属の一科 | 10 | 1
| 双魚目 | ガガンボ科 | ガガンボ属 | ガガンボ | 1 | 41
| 双魚目 | ヒストイ科 | ヒストイ属 | ヒストイ | 1 | 5
| サンカクアタマウズムシ科 | サンカクアタマウズムシ科 | サンカクアタマウズムシ科 | サンカクアタマウズムシ科 | 1 | 1
| シジミ科 | シジミ属 | シジミ | シジミ | 3 | 16
| シジミ科 | シジミ属 | シジミ | シジミ | 6 | 21
| サラガニ科 | サラガニ科 | サラガニ | サラガニ | 8 | 1
| サラガニ科 | サラガニ科 | サラガニ | サラガニ | 1 | 1
| アブ科 | アブ科 | アブ | アブ | 7 | 1
| ガガンボ科 | ガガンボ科 | ガガンボ | ガガンボ | 8 | 1
| ガガンボ科 | ガガンボ科 | ガガンボ | ガガンボ | 3 | 4
| ガガンボ科 | ガガンボ科 | ガガンボ | ガガンボ | 56 | 1
| ガガンボ科 | ガガンボ科 | ガガンボ | ガガンボ | 2 | 1
| サニグリ目 | サニグリ目 | サニグリ目 | サニグリ目 | 3 | 1
| サニグリ目 | サニグリ目 | サニグリ目 | サニグリ目 | 1 | 6

合計 413 210 395

図2 St.1 坂下橋
図3 St.2 飯野
図4 St.3 真幸堰
図5 各地点のEPT%
県内河川における底生動物の出現状況と理化学検査との相関

廣池勇太 1) 赤﨑いずみ 島田玲子 三角敏明

Occurrence Distribution of Zoo-benthos and correlation with Physicochemical inspection of River Water Quality in Miyazaki Prefecture

Yuta HIROIKE, Izumi AKAZAKI, Reiko SHIMADA, Toshiaki MISUMI

要旨

当研究所では、平成 4 年度から本県を流れる河川について底生動物による生物学的水質評価を行ってい
る。今回、當研究所年報で県内河川の水質について報告された平成 4 年度から 26 年度までの調査結果をまとめ、底生動物の出現状況と理化学検査結果との相関関係の検討を行った。生物学的水質評価は平均スコア法 (ASPT) により判定したが、理化学検査の総窒素濃度との間に相関が認められたものの、他の関係については明確なものは認められなかった。

キーワード：底生動物、生物学的水質評価、理化学検査、相関、平均スコア法

はじめに

水質調査は通常、理化学検査により環境基準値等と比較して評価している。一方、水辺に生息する底生動物を用いる方法で水質を調べる方法（以下「生物学的水質評価」という。）もある。理化学検査と違い生物学的水質評価に明確な基準等はないが、水環境が底生動物の生息期間中に及ぼす影響を評価することが可能と考えられることから、両方を活用することにより、河川水質について総合的な情報を得ることができると考えられている。

今回、当研究所が平成 4 年度から 26 年度までに行った底生動物の生息状況及び理化学検査結果のデータを用い、生物学的水質評価と理化学検査結果の相関関係を検討したので、その結果を報告する。

方法

1 サーデータの概要

当研究所年報で報告された平成 4 年度から 26 年度までの 14 河川延べ 148 調査地点（表 1）のデータを集計した。なお、同一年度に同一河川を数回調査した場合や、異なる年度に同一河川を数回調査した河川のデータはそれぞれ別のデータとして取り扱った。

理化学検査項目は、すべての年度で報告されていいた 7 項目（水温、水素イオン濃度 pH、浮遊物質量 SS、生物化学的酸素要求量 BOD、溶存酸素量 DO、総窒素 T-N 及び総リン T-P）を用い、検査結果が報告下限値未満（例えば、「0.5 未満」など）で報告されていたデータは、報告下限値を検討データとした。

環境科学部 1)現 都城保健所

-101-
2 底生動物の分類

底生動物の分類は、「日本産水生昆虫—科・属・種への検索—」に従い「科」レベルに統一した。

3 生物学的水質評価

生物学的水質評価は、「科」レベルのデータを活用する方法として全国的に用いられている「平均スコア法」を用いた。この方法は、河川水質状況に加え周辺地域も合わせた総合的な河川環境の良好性を示す指標として広く用いられている。ASPT 値は 1から10までの数値で示され、10に近いほど污濁の程度が少なく自然状態に近いと判定される（表2）。

ASPT 値の算出は、山崎らの研究に従い報告されたスコア表を用いた。

これとは別に、底生動物の中で水質や河川環境の変化に敏感なカガロウ目、カワガラ目、トビケラ目それぞれに属している科の出現状況をまとめた。

表1 調査実施河川と調査地点

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査河川</th>
<th>調査地点</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成4年度, 平成12年度, 平成24年度, 平成26年度</td>
<td>大歳川 (大歳川水系)</td>
<td>志賀島橋、仁足尾橋、有田橋、石原浄水場</td>
</tr>
<tr>
<td>平成5年度, 平成22年度</td>
<td>白根川 (白根川水系)</td>
<td>横岡、日之影橋、大貫、長良橋、長谷橋</td>
</tr>
<tr>
<td>平成6年度, 平成25年度</td>
<td>山形川 (大歳川水系)</td>
<td>高崎橋、八木橋、青田橋、御前橋、岩瀬橋</td>
</tr>
<tr>
<td>平成7年度, 平成23年度</td>
<td>五箇川 (五箇川水系)</td>
<td>杉崎、上村橋、黒い、清流橋、馬ノ下、土ノ原橋、前の下橋</td>
</tr>
<tr>
<td>平成10年度</td>
<td>五十鈴川 (五十鈴川水系)</td>
<td>橋野、桜木、身方、神楽、小松</td>
</tr>
<tr>
<td>平成26年度</td>
<td>鎌子川 (五箇川水系)</td>
<td>黒岩小学校</td>
</tr>
<tr>
<td>平成26年度</td>
<td>岩崎川 (大歳川水系)</td>
<td>森永橋</td>
</tr>
<tr>
<td>平成26年度</td>
<td>宇都川 (大歳川水系)</td>
<td>上足橋</td>
</tr>
<tr>
<td>平成12年度, 平成26年度</td>
<td>高崎川 (大歳川水系)</td>
<td>鎌之口橋付近、チェノ橋付近、大樹溝</td>
</tr>
<tr>
<td>平成26年度</td>
<td>岩崎川 (大歳川水系)</td>
<td>親水公園付近</td>
</tr>
<tr>
<td>平成26年度</td>
<td>鎌子川 (大歳川水系)</td>
<td>鎌子川</td>
</tr>
</tbody>
</table>

表2 平均スコア法の概要

<table>
<thead>
<tr>
<th>出現科のスコア合計値</th>
<th>出現した数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

汚濁の程度 少 多
自然状態 良 悪
人為影響 少 多
結果
1 本県における底生動物の出現状況

14 河川で2綱68科の底生動物が出現し、表3のスコア表に挙げられている2綱60科のうち2綱49科が出現していた。

調査地点当たりでみると、科から26科以下、ミミズ及びヒルの2綱も科として扱う）出現し、11 ～ 15 科出現する地点で最も多くかった（約45％）(図1)。

表3 スコア表の生物一覧

<table>
<thead>
<tr>
<th>生物群</th>
<th>分類</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>カガロウ目</td>
<td>カガロウ科</td>
<td>カガロウ科</td>
</tr>
</tbody>
</table>

フレーズ：表1 調査実施河川と調査地点、表2 平均スコア法の概要、表3 スコア表の生物一覧

-102-
スコア表の2綱60科の出現率を図2に示す。
ヒラタカゲロウ科、コカゲロウ科、マダラカゲロウ科、カワクラ科、シマトビケラ科、ガガンボ科、ユスリカ科はいずれも60%を超える高い出現率で、調査時期に関係なく広く分布していた。
一方、シロイロカゲロウ科、ナベブタムシ科、ヒメトビケラ科、メイガ科、ゲンゴロウ科、ミズスシマ科、チョウバエ科、スカカ科、モノアラガイ科、ヒラマキガイ科、カワクサガイ科の出現率は0で、これらの底生動物は川の瀬でサンプリングを行う環境庁水質保全局編のマニュアル4)では、採取されにくいとされている。また、スコア表に記載されていないニンギョウトビケラ科などの19科の底生動物は、図3に示すとおり出現率が7%未満と低かった。
このような、本県における底生動物の出現状況は、全国35の地方自治体の研究機関が調査した結果に類似していた5)。

2 カゲロウ目、カワクラ目、トビケラ目の出現状況
1）カゲロウ目
カゲロウ目は一調査地点当たり最多7科、最少1科で、3又は4科出現する頻度が高く、いずれの河川においても、上流域から下流域まで広く分布していた。
2）カワゲラ目
カワゲラ目は一調査地点当たり最多4科、最少0科で、全く出現しなかった地点が全調査地点の約20%、出現しても1科のみの調査地点が約半数あった。また、人家や交通量が少なく、渓流に近い河川形態をしている調査地点ではカワゲラ目が多く出現する傾向にあった。

3）トビケラ目
トビケラ目は一調査地点当たり最多10科、最少0科であった。県北の五ヶ瀬川や耳川の比較的上流域では、ナガレトビケラ科とシマトビケラ科以外のトビケラが多く出現していたが、その他の地点では、この2科の出現割合が高かった。

3 底生動物の出現状況と理化学検査結果
一調査地点当たりのASPT値は、最大8.9、最小4.5、平均は7.6で、図4に示すとおり、7以上8未満が最も多く(46%)、次いで8以上9未満(34%)であった。

そこで、ASPT値8を一つの区切りととらえ、ASPT値が8以上の地点と8未満の地点に分け、理化学検査結果との相関を検討した。
結果を表4及び5に示す。
ASPT値が8以上では、水温、pH及びDOが総科数、総個体数等と相関がみられた。一方、ASPT値が8未満では、SS、BOD、T-N及びT-PとASPT値の間に負の相関がみられた。
結果を散布図にし、回帰直線を描いたものを図5及び6に示す。
国土交通省と環境省が合同で行っている全国水生生物調査では、T-Nの濃度が低いほど「きれいな水」と判定され、濃度が高いほど「少しきたない水」「きたない水」と判定される傾向がみられるが、図6の③T-NとASPT値の関係でも同様の結果が確認された。
しかしながら、多くの散布図でデータのばらつきが大きく、底生動物の出現状況と理化学検査結果との間に明確な相関はみられなかった。

まとめ
当研究所が行ったこれまでの調査結果をとりまとめたところ、ヒラタカゲロウ科やカワゲラ科な
どの出現率が高かったこと、シロカゲロウ科やナベブタムシ科などが出現しなかったことなど、本県における底生動物の出現状況は、全国の自治体の研究機関が調査した結果と類似していた。

また、底生動物の出現状況と理化学検査結果との関係については、ASPT 値と T-N に相関が認められたものの、他の関係については明確なものは得られなかった。今回、BODや T-N など、単一の水質項目との関係について検討したが、本来、底生動物の生息は様々な水質と複合的に関係するとともに、河床構造や河川周辺の環境にも影響を受けているものと考えられる。このため、今後、底生動物の生息に影響を及ぼしていると考えられる因子を抽出し、多変量解析などの統計手法を用いながら解析を進めていきたい。

文献

1) 宮崎県：環境白書 平成 28 年(2016 年)版，(2017)
2) 国立研究開発法人 森林総合研究所森林整備センター 九州整備局：宮崎県の概要
3) 川合禎次，谷田一三共編：日本産水生昆虫一科・属・種への検索一，東海大学出版会，(2005)
4) 環境庁水質保全局：大型底生動物による河川水域環境評価のための調査マニュアル，(1992)
5) 山崎正敏，野崎隆夫，藤澤明子，小川剛：河川の生物学的水域環境評価基準の設定に関する研究--全国公害研協議会環境生物部会共同研究成果報告--，全国公害研会誌，21(3)，114-145，(1996)
6) 国土交通省：一級河川における水生生物調査結果と他の水質測定項目との比較，(2005)
表4 ASPT値8以上の項目間の相関係数

<table>
<thead>
<tr>
<th></th>
<th>水温</th>
<th>pH</th>
<th>SS</th>
<th>BOD</th>
<th>DO</th>
<th>TN</th>
<th>TP</th>
<th>カゲロウの科数</th>
<th>カワゲラの科数</th>
<th>トビケラの科数</th>
<th>総科数</th>
<th>総個体数</th>
<th>平均スコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>水温</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>-0.388</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>0.153</td>
<td>-0.189</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>0.291</td>
<td>-0.287</td>
<td>-0.037</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>-0.540</td>
<td>0.507</td>
<td>-0.088</td>
<td>-0.092</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>-0.225</td>
<td>0.192</td>
<td>-0.098</td>
<td>-0.100</td>
<td>0.248</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>0.106</td>
<td>0.132</td>
<td>-0.079</td>
<td>-0.122</td>
<td>0.054</td>
<td>0.330</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カゲロウの科数</td>
<td>-0.364</td>
<td>0.511</td>
<td>-0.028</td>
<td>-0.241</td>
<td>0.354</td>
<td>-0.075</td>
<td>-0.004</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カワゲラの科数</td>
<td>-0.447</td>
<td>0.318</td>
<td>-0.159</td>
<td>-0.176</td>
<td>0.577</td>
<td>-0.043</td>
<td>0.401</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トビケラの科数</td>
<td>-0.473</td>
<td>0.401</td>
<td>0.041</td>
<td>0.014</td>
<td>0.558</td>
<td>0.012</td>
<td>0.026</td>
<td>0.532</td>
<td>0.532</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>総科数</td>
<td>-0.501</td>
<td>0.583</td>
<td>-0.056</td>
<td>-0.204</td>
<td>0.533</td>
<td>0.030</td>
<td>0.031</td>
<td>0.726</td>
<td>0.064</td>
<td>0.848</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>総個体数</td>
<td>-0.521</td>
<td>0.570</td>
<td>-0.125</td>
<td>-0.062</td>
<td>0.649</td>
<td>0.353</td>
<td>0.171</td>
<td>0.397</td>
<td>0.649</td>
<td>0.075</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均スコア</td>
<td>0.167</td>
<td>-0.579</td>
<td>0.130</td>
<td>0.370</td>
<td>-0.181</td>
<td>-0.318</td>
<td>-0.256</td>
<td>-0.367</td>
<td>-0.169</td>
<td>-0.360</td>
<td>0.365</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

表5 ASPT値8未満の項目間の相関係数

<table>
<thead>
<tr>
<th></th>
<th>水温</th>
<th>pH</th>
<th>SS</th>
<th>BOD</th>
<th>DO</th>
<th>TN</th>
<th>TP</th>
<th>カゲロウの科数</th>
<th>カワゲラの科数</th>
<th>トビケラの科数</th>
<th>総科数</th>
<th>総個体数</th>
<th>平均スコア</th>
</tr>
</thead>
<tbody>
<tr>
<td>水温</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>-0.196</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>0.103</td>
<td>0.044</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>0.222</td>
<td>-0.226</td>
<td>0.449</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>-0.579</td>
<td>0.444</td>
<td>-0.112</td>
<td>-0.235</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>0.025</td>
<td>0.101</td>
<td>-0.523</td>
<td>-0.522</td>
<td>-0.144</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>0.141</td>
<td>-0.094</td>
<td>0.462</td>
<td>0.747</td>
<td>-0.272</td>
<td>0.758</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カゲロウの科数</td>
<td>0.102</td>
<td>0.026</td>
<td>-0.162</td>
<td>-0.095</td>
<td>0.053</td>
<td>-0.233</td>
<td>-0.269</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カワゲラの科数</td>
<td>-0.289</td>
<td>0.042</td>
<td>-0.310</td>
<td>-0.176</td>
<td>0.382</td>
<td>-0.431</td>
<td>-0.344</td>
<td>0.349</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トビケラの科数</td>
<td>-0.252</td>
<td>0.197</td>
<td>-0.242</td>
<td>-0.106</td>
<td>0.209</td>
<td>-0.207</td>
<td>-0.065</td>
<td>0.227</td>
<td>0.253</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>総科数</td>
<td>-0.033</td>
<td>0.131</td>
<td>-0.215</td>
<td>-0.058</td>
<td>0.163</td>
<td>-0.189</td>
<td>-0.083</td>
<td>0.638</td>
<td>0.481</td>
<td>0.634</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>総個体数</td>
<td>-0.177</td>
<td>0.131</td>
<td>0.018</td>
<td>0.145</td>
<td>0.068</td>
<td>0.458</td>
<td>0.282</td>
<td>-0.034</td>
<td>-0.134</td>
<td>0.121</td>
<td>0.111</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>平均スコア</td>
<td>-0.065</td>
<td>0.089</td>
<td>-0.504</td>
<td>-0.506</td>
<td>0.205</td>
<td>-0.645</td>
<td>-0.635</td>
<td>0.162</td>
<td>0.452</td>
<td>0.288</td>
<td>-0.136</td>
<td>-0.199</td>
<td>1</td>
</tr>
</tbody>
</table>
y = -0.6243x + 22.483
R² = 0.2515

図 5 ASPT 値 8 以上の項目間の散布図

y = 6.5237x - 33.269
R² = 0.3399

図 6 ASPT 値 8 未満の項目間の散布図
水辺環境調査の指導者育成研修会の現状と満足度

広池勇太 1) 赤﨑いずみ 島田玲子 三角敏明

An Analysis of Customer Satisfaction Survey on Water Environmental Research Training

Yuta HIROIKE, Izumi AKAZAKI, Reiko SHIMADA, Toshiaki MISUMI

要旨

本県では, 平成 18 年度から水辺環境調査の指導者育成のための研修会を実施しており, 平成 25 年度からは研修会受講者に対してアンケートを配布し, 回答をお願いしている. 今回, 平成 25 年度から平成 27 年度までのアンケート結果を用いて, CS(顧客満足度)分析を行ったところ, 研修内容には概ね満足していると考えられたが, 水生生物調査に関しては研修方法などについて改善が必要という結果になった.

キーワード: 水辺環境調査, CS(顧客満足度)分析, 環境学習

はじめに

宮崎県では, 誰でも親しみながら川の調査ができるように, 平成 17 年度に「だれにでもできる五感を使った楽しい水辺の調査(以下「水辺環境調査」という.)」を独自に考案し, 平成 18 年度から全県的な普及に努めている. これに併せて当研究所では, 水辺環境調査の指導者用マニュアルを用いて, 平成 18 年度から年度当初に「水辺環境調査の指導者育成研修会」を実施しており, また, 平成 25 年度からは研修内容に関するアンケートも実施している.

今回, アンケート結果を用いて研修内容と受講者の要望との乖離を把握し, 本研修会を充実させるための基礎資料を作成するため CS(Customer Satisfaction; 顧客満足度)分析を実施したので, その結果について報告する.

方法

1 水辺環境調査研修の概要

本研修は, 4 月下旬から 5 月中旬の時期に, 県内市町村職員や保健所職員を対象に実施している. 研修内容は, 水辺環境調査の指標である「自然の音」, 「水生生物調査」などについての座学及び河川での現地実習である.

なお, 水辺環境調査の指標は図 1 に示す 6 項目であり, それぞれの項目を 4 点満点で評価し, 最終的に, 図 2 に示す六角形のレーダーチャートに記入するようになっている.

2 アンケート内容

研修会終了時に, 図 3 に示す項目についてアンケート調査を実施した.

アンケートの調査項目(問 4(4)及び問 6 を除く.)ごとに表 1 のとおり点数を割当て, CS 分析を行った.
CS分析は、主にマーケティングの分野で用いられている分析手法であるが、教育分野の授業評価などでも用いられている。

この分析方法を用いることで、相手の意識や感想から要望と満足度を数値化・グラフ化し、その結果をもとに研修内容を再考・構築することができる。なお、アンケートは平成25~27年度分を用いた。

1) 重要度及び重要度偏差値の算出

アンケート問5の「研修に参加して良かったか」を目的変数として、他の5項目との相関係数を求めて重要度とした。重要度を偏差値に換算し、重要度偏差値とした。

2) 満足度及び満足度偏差値の算出

アンケート問5の「研修会に参加して良かったか」を除く5項目について、各点数がどの程度占めているか割合を求め、これを満足度とした。満足度を偏差値に換算し、満足度偏差値とした。
偏差値 $= \frac{10 \times (重要度又は満足度)}{標準偏差} + 50$

3）直交座標系へのプロット
横軸を重要度偏差値、縦軸を満足度偏差値、点 $(50, 50)$ を原点とする直交座標系にプロットした。

結果

1）アンケート回収率
アンケート回収率は 100% であった。(平成 25 年度 n=21, 平成 26 年度 n=26, 平成 27 年度 n=36).

2）アンケート結果
アンケート集計結果は表 2 に示すとおりである。なお、回答者によっては未回答の項目もあったため、受講者数と集計数は必ずしも一致しない。研修会参加者の約 7 割は「初めて水辺環境調査を経験した」と回答している一方で、調査経験者も多数受講していることが分かった。重要度偏差値及び満足度偏差値をプロットしたグラフを図 4 に示す。

1）第一象限(重点維持分野)
プロットされた項目はなかった。

2）第二象限(維持分野)
「開催時期」、「研修時間」及び「配付資料」がプロットされ、今後も現状の取組を着実に推進することが必要という結果になった。

3）第三象限(改善分野)
「水辺環境調査の経験」がプロットされた。本研修会において改善できる内容ではないが、参考としてプロットした。

4）第四象限(重点改善分野)
「水辺環境指標の分かりやすさ」がプロットされ、研修会満足度向上のために取り組むべき課題であると認識することができた。これについて、自由記入欄の内容をみると、いずれの年度も水生生物調査に関する意見が最も多く、次いで COD パックテストについての意見であった。

考察

6 つの水辺環境調査の指標は、「だれにでもできる」「分かりやすい」をコンセプトにしているが、受講者からは「水生生物の判定が難しい」などの意見が最も多く出されていた。

今回のアンケート調査で明らかとなった課題として、現在「一対多」の講義形式で行っている座学を、時間を区切って 5～6 人程度の班に分けて説明するなど、「説明が伝わりやすい環境」を作ることが必要である。
的な対応ができるよう、当研究所職員のレベル均質化を図ることが挙げられる。

アンケートの結果は、参加者のニーズを知る大切な情報源であり、「計画(Plan)－実行(Do)－評価(Check)－改善(Act)」サイクルを考えたとき、研修受講者の意見は評価の要素としても活用できる。アンケート内容を充実させることで、その結果をもとにした本研修会の改善につながる意見を多く集めることができ、研修内容を見直した新たな計画を実行できるようになると考える。

文献

1）南学：学生による授業評価へのCS分析の適用，三重大学教育学部附属教育実践総合センター紀要，(2007)
2）松本幸正, 塚本弥八郎: CS分析の考え方を導入した授業評価アンケートの分析と授業改善ポイントの定量化, 京都大学高等教育研究, (2010)
3）遠藤隆: 学生による授業評価のCS分析―物理学科の事例―，大学教育年報，佐賀大学高等教育開発センター，(2008)
4）菅民郎: Excelで学ぶ多変量解析入門，オーム社，(2014)
IV 組織機構の概要

1 沿革

2 組織機構と業務

3 職員配置表

4 予算の概要

5 庁舎の概要
<table>
<thead>
<tr>
<th>年代</th>
<th>件名メモ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949(昭和24).12.20</td>
<td>宮崎県衛生試験所を廃し、宮崎県衛生研究所を発足
宮崎市清水町65番地
庶務課、細菌検査部、化学試験部、食品衛生検査部の1課3部を設置</td>
</tr>
<tr>
<td>1952(昭和27).9.2</td>
<td>臨床病理検査部を設置</td>
</tr>
<tr>
<td>1967(昭和42).3.29</td>
<td>新庁舎竣工、移転
宮崎市北高松町5番地30号
建物：鉄筋コンクリート3階建 広地面積1,823.44㎡ 建物面積1,332.51㎡</td>
</tr>
<tr>
<td>1968(昭和43).4.1</td>
<td>広務課、微生物部、食品部、化学部、環境部の1課4部制となる</td>
</tr>
<tr>
<td>1971(昭和46).8.7</td>
<td>宮崎県公害センター設置
宮崎市北高松町5番地30号（宮崎県衛生研究所敷地内）
広務課、大気部、水質部の1課2部を設置</td>
</tr>
<tr>
<td>1972(昭和47).5.30</td>
<td>宮崎県公害センター庁舎建設、移転
宮崎市北高松町5番地30号（宮崎県衛生研究所敷地内）
建物：鉄筋コンクリート2階建 延面積163.89㎡</td>
</tr>
<tr>
<td>1980(昭和55).10.1</td>
<td>宮崎県公害センター移転（旧宮崎保健所を改修）
宮崎市清水3丁目6番地31号
建物：鉄筋コンクリート2階建 広地面積1,667.04㎡ 建物面積1,156.84㎡</td>
</tr>
<tr>
<td>1981(昭和56).4.1</td>
<td>公害センター別館に宮崎県大気汚染中央監視局を設置
大気汚染監視テレメーター装置で県内29か所の大気汚染等を監視</td>
</tr>
<tr>
<td>1990(平成2).4.1</td>
<td>宮崎県衛生研究所と宮崎県公害センターを統合し、宮崎県衛生環境研究所を発足
同時に、宮崎市学園木花台西2丁目3番地2号に新庁舎竣工移転
建物：鉄筋コンクリート3階建 広地面積10,735㎡ 建物面積3,382㎡
企画管理課、微生物部（ウイルス科、細菌科）、衛生化学部（食品科、化学科）、環境科学部（大気科、水質科）の1課3部（6科）を設置</td>
</tr>
<tr>
<td>1998(平成10).4.1</td>
<td>食品衛生検査管理監を設置</td>
</tr>
<tr>
<td>2007(平成19).4.1</td>
<td>科を廃止し、各部に「副部長」を設置</td>
</tr>
<tr>
<td>2009(平成21).4.1</td>
<td>中央保健所検査担当が衛生環境研究所に統合される</td>
</tr>
<tr>
<td>2010(平成22).4.1</td>
<td>都城保健所検査担当が衛生環境研究所に統合される</td>
</tr>
<tr>
<td>2011(平成23).3.31</td>
<td>微生物部附属棟を増設 271㎡</td>
</tr>
<tr>
<td>2014(平成26).4.1</td>
<td>延岡保健所検査担当が衛生環境研究所に統合される</td>
</tr>
</tbody>
</table>
2 組織機構と業務

(2017年4月1日現在)

企画管理課

・予算管理、庁舎管理、企画調整連絡等総務関係業務全般
・調査研究の企画調整、他機関との連絡調整
・保健衛生・環境保全に係る情報収集及び解析運用
・宮崎県感染症情報センターの運営
・上記関連の各種調査研究、研修指導

微生物部

・感染症の検査
・食中毒の原因究明
・飲料水、工場排水、海水浴場水等の微生物検査
・特定感染症検査
・病原体の遺伝子解析
・食品の規格検査
・感染症流行予測調査事業（厚生労働省）
・食品の食中毒菌汚染実態調査（厚生労働省）
・感染症発生動向調査における病原体検索（厚生労働省）
・上記関連の各種調査研究、研修指導

衛生化学部

・食品中の残留農薬検査、残留動物用医薬品検査
・食品中の食品添加物検査、アレルギー物質検査、食品の規格検査
・食品苦情等の検査
・家庭用品の検査
・医薬品、医療機器、健康食品の試験
・温泉の試験
・環境放射能水準調査（原子力規制委員会原子力規制庁）
・食品中に残留する農薬等の摂取量調査（厚生労働省）
・上記関連の各種調査研究、研修指導

環境科学部

・大気汚染物質常時監視
・大気立入検査測定
・酸性雨調査
・公共用水域の水質調査、地下水質調査
・事業場排水の水質測定
・水質汚濁事故の原因究明
・水生生物等による水辺環境調査
・飲料水水質検査
・廃棄物関連調査
・化学物質環境実態調査（環境省）
・酸性雨モニタリング調査（環境省）
・上記関連の各種調査研究、研修指導

食品衛生検査管理監

・食品衛生検査業務管理（GLP）
（内部点検、内部精度管理、外部精度管理）
職員配置表

(2017年4月1日現在)

<table>
<thead>
<tr>
<th>部・課</th>
<th>職種</th>
<th>事務職員</th>
<th>技術職員</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>薬剤師</td>
<td>獣医師</td>
</tr>
<tr>
<td>所長</td>
<td>職種</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>副所長</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>食品衛生検査管理監</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>企画管理課</td>
<td>課長</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>専門主幹</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>専門主事</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>主事</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>技師</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>微生物</td>
<td>部長</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>特別研究員兼副部長</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>副部長</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>主任研究員</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>専門技師</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>主任技師</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>技師</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>衛生化学</td>
<td>（兼）部長</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>特別研究員兼副部長</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>副部長</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>主任研究員</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>主任技師</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>技師</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>環境科学</td>
<td>部長</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>副部長</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>主任研究員</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>専門技師</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>主任技師</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>技師</td>
<td></td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>4</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>
4 予算の概要 2016(平成28)年度

(1)歳入

<table>
<thead>
<tr>
<th>予算科目</th>
<th>収入済額</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用料及び手数料</td>
<td>353</td>
</tr>
<tr>
<td>増入</td>
<td>24</td>
</tr>
<tr>
<td>計</td>
<td>377</td>
</tr>
</tbody>
</table>

(2)歳出

<table>
<thead>
<tr>
<th>予算科目</th>
<th>一般管理費</th>
<th>人事管理費</th>
<th>公衆衛生監視費</th>
<th>予防費</th>
<th>衛生研究所費</th>
<th>食品衛生指導費</th>
<th>環境衛生指導費</th>
<th>環境保全費</th>
<th>業務費</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>報酬</td>
<td>3,270</td>
<td>423</td>
<td>1,601</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,293</td>
</tr>
<tr>
<td>職員手当</td>
<td></td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>640</td>
</tr>
<tr>
<td>共済費</td>
<td>1,975</td>
<td>1</td>
<td>259</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,242</td>
</tr>
<tr>
<td>賃金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,219</td>
</tr>
<tr>
<td>報償費</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>旅費</td>
<td>284</td>
<td>522</td>
<td>772</td>
<td>595</td>
<td>721</td>
<td>422</td>
<td>982</td>
<td>165</td>
<td></td>
<td>4,463</td>
</tr>
<tr>
<td>需用費</td>
<td>125</td>
<td>10,682</td>
<td>13,453</td>
<td>12,025</td>
<td>802</td>
<td>13,803</td>
<td>435</td>
<td>51,324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>役務費</td>
<td>372</td>
<td>280</td>
<td>955</td>
<td>563</td>
<td>13</td>
<td>589</td>
<td>8</td>
<td>2,779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>委託料</td>
<td>291</td>
<td>25,929</td>
<td>150</td>
<td>932</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27,302</td>
</tr>
<tr>
<td>使用料及び賃借料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,283</td>
</tr>
<tr>
<td>備品購入費</td>
<td>713</td>
<td>807</td>
<td></td>
<td></td>
<td>885</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,404</td>
</tr>
<tr>
<td>負担金補助及び交付金</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>公課費</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>計</td>
<td>5,529</td>
<td>1,019</td>
<td>640</td>
<td>13,162</td>
<td>48,887</td>
<td>13,308</td>
<td>1,387</td>
<td>22,631</td>
<td>607</td>
<td>107,171</td>
</tr>
</tbody>
</table>

（注）四捨五入の関係で内訳と計が一致しないことがある。

5 庁舎の概要

●敷地面積 10,735㎡
●本館延床面積 3,382㎡
 1階床面積 1,138㎡
 2階 1,099㎡
 3階 1,031㎡
 R階 114㎡
●特殊化学物質分析施設 217㎡
●微生物部附属棟 271㎡
●車庫 99㎡