
#### 課題番号5

## 植物に含まれる 有毒アルカロイド等の 一斉分析法の検討

衛生化学部 〇竹原瑛梨奈 野口翔(現 環境省) 高山清子 野口辰美

### 食中毒発生状況



### 植物性自然毒分析の現状

当所での分析体制

平成29年度 グロリオサ球根中のコルヒチン分析 (HPLCによる分析)

全国の一斉分析例

平成28年度 A県 14成分中11成分検出

平成29年度 B市 11成分中11成分検出

C市 13成分中13成分検出

(全てLC/MS/MSによる分析)

## 全国の一斉分析例

| 植物名       | 成分名       | A県 | B市 | C市 |
|-----------|-----------|----|----|----|
| トリカブト     | アコニチン     | 0  | 0  | 0  |
|           | メサコニチン    | 0  | 0  | O  |
|           | ヒパコニチン    |    | 0  | 0  |
|           | ジェサコニチン   | 0  |    |    |
| スイセン      | ガランタミン    | O  | 0  | 0  |
|           | リコリン      | 0  | 0  |    |
| チョウセンアサガオ | アトロピン     | O  |    | O  |
|           | スコポラミン    | 0  |    | 0  |
| ジャガイモ     | ソラニン      | O  | 0  |    |
|           | チャコニン     | 0  | 0  |    |
| イヌサフラン    | コルヒチン     |    | 0  | O  |
|           | デメコルシン    |    |    | O  |
| バイケイソウ    | ベラトラミン    | 0  |    | 0  |
|           | ジェルビン     | 0  |    | 0  |
|           | シクロパミン    |    |    | O  |
| ウメ        | アミグダリン    |    | 0  |    |
| ヨウシュヤマゴボウ | フィトラッカゲニン |    | 0  |    |
| ユウガオ      | ククルビタシンE  |    | 0  |    |
| タバコ       | ニコチン      |    |    | 0  |
|           | アナバシン     |    |    | 0  |
|           |           |    |    |    |

### 分析機器の特徴

**HPLC** 

保持時間で定性

→ 保持時間がほぼ同じ場合には 確実な定性が困難

LC/MS/MS

保持時間+物質特有の質量数で定性

→ HPLCより正確に定性が可能 多成分一斉分析に適している

### 調査研究の目的・方法

目 的:植物性有毒アルカロイドの一斉分析法の 確立

期 間:平成30年度~令和2年度

分析法:高速液体クロマトグラフタンデム型質量 分析計(LC/MS/MS)

#### 研究計画

標準品による予備試験の検討及び本研究の 対象となる試料の割り出し

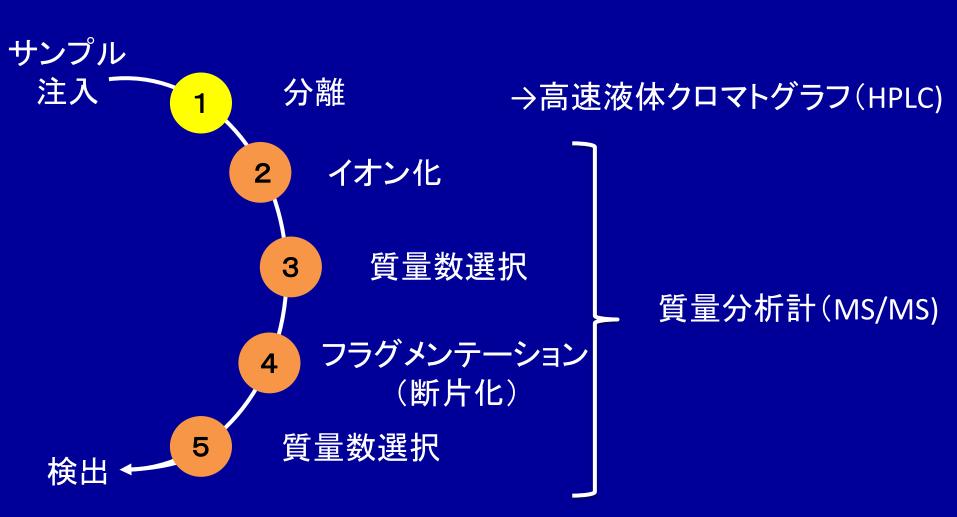
対象物質の一斉分析の試行

一斉分析に有効なメソッド(条件)、抽出法 及び精製法の検討

- 検討した試験法の評価

## 検討した有毒成分

|           | 本研究                   | A県  | В市          | C市          |
|-----------|-----------------------|-----|-------------|-------------|
| アコニチン     | O ( <u>*</u> )        | 0   | 0           | 0           |
| メサコニチン    | <b>(</b> %)           | 0   | 0           | 0           |
| ガランタミン    | 0                     | 0 0 | 0           | 0           |
| リコリン      | 0                     | 0   | 0           |             |
| アトロピン     | 0                     | 0   |             | 0           |
| スコポラミン    | 0                     | 0   |             | 0           |
| ソラニン      | 0<br>0<br>0<br>0      | 0 0 | 0           |             |
| チャコニン     |                       | 0   |             |             |
| ヒパコニチン    | <b>O</b> ( <b>%</b> ) |     | 0<br>0<br>0 | 0           |
| コルヒチン     | 0                     |     | 0           | 0<br>0<br>0 |
| ベラトラミン    |                       | 0   |             | 0           |
| ジェルビン     |                       | 0   |             | 0           |
| ジェサコニチン   | 0                     | 0   |             |             |
| アミグダリン    |                       |     | 0           |             |
| フィトラッカゲニン |                       |     | 0           |             |
| ククルビタシンE  |                       |     | 0           |             |
| デメコルシン    |                       |     |             | 0           |
| アナバシン     |                       |     |             | 0           |
| ニコチン      |                       |     |             | 0<br>0<br>0 |
| シクロパミン    |                       |     |             | 0           |
| ヒヨスチアミン   | 0                     |     |             |             |
|           |                       |     |             |             |


## 結果

## 一斉分析測定

|                        | 標準品 | 分析可能 |
|------------------------|-----|------|
| ガランタミン                 | 0   | 0    |
| リコリン                   | O   | 0    |
| アトロピン類 (アトロピン・ヒョスチアミン) | 0   | 0    |
| スコポラミン                 | O   | 0    |
| チャコニン                  | 0   | 0    |
| ジェサコニチン                | O   | 0    |
| コルヒチン                  | O   |      |
| ソラニン                   | O   |      |

# 考察

## LC/MS/MS測定の流れ



## 分離条件

| カラム |         |                                        |                |
|-----|---------|----------------------------------------|----------------|
|     |         | D県                                     | 本研究            |
|     |         | U乐                                     | <b>半</b>       |
| 充填剤 | 充填剤     | InertSustain C18<br>(ODS-3 <b>同等</b> ) | Inertsil ODS-3 |
|     | カラムホルダー | PEEK *製(樹脂)                            | 金属製            |
|     |         |                                        |                |

カラムホルダー

\* PEEK:ポリエーテルエーテルケトン、熱可塑性樹脂

### カラムホルダーの影響

カラムホルダーが金属のカラムは、官能基を 複数有する化合物に対して金属の影響を 与えやすい。

- 「・ピークのテーリング ・ピークが検出しない ・感度低下

等

## ソラニン・コルヒチンの構造

ソラニン及びコルヒチンが検出されなかった

カラムの検討が必要

### まとめ

• 有毒アルカロイド6成分の一斉分析が可能

一斉分析で不採用となった2成分(コルヒチン 及びソラニン)について条件検討が必要

### 今後の研究方針

1 一斉分析測定成分の追加 (ベラトラミン、アコニチン 等)

2 抽出方法の最適化

3 分離条件の最適化