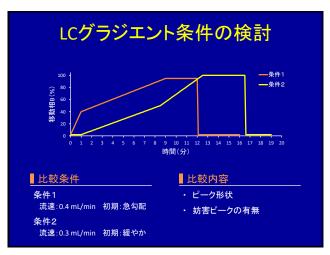
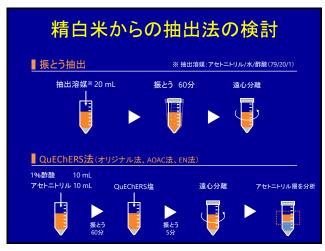
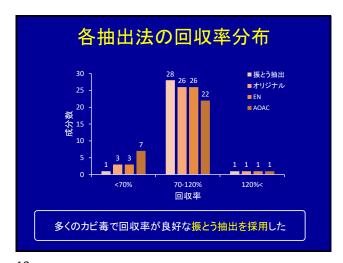
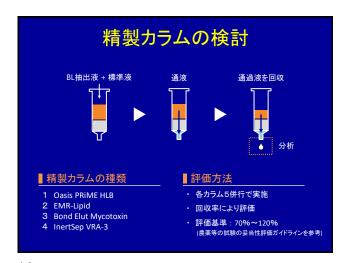


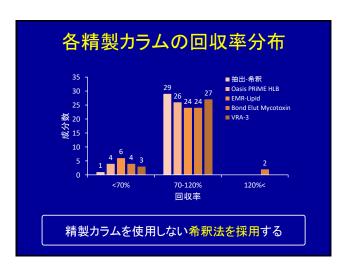
カビ毒	主な汚染食品	毒性
アフラトキシンB1, B2, G1, G2	ナッツ類、トウモロコシ、 米、麦、香辛料	肝がん、肝障害、免疫毒性
アフラトキシンM1	牛乳、チーズ	-
オクラトキシンA	トウモロコシ、麦、ナッツ類、 ワイン、コーヒー豆	腎障害、腎がん、免疫毒性 催奇形性
トリコテセン系 デオキシニパレノール ニパレノール, T-2, HT-2	麦、米、トウモロコシ	消化器系障害、免疫毒性、 IgA腎症
パツリン	リンゴ、リンゴ加工品	消化器出血

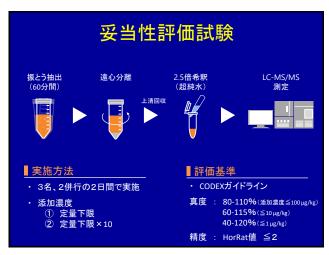


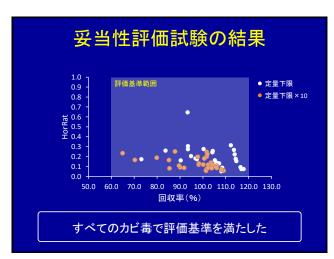







使用機器	Waters Xevo TQ-XS			
分析カラム	ACQUITY UPLC BEH C18 (1.7 μ m, 2.1 mm \times 100 mm)			
移動相A	1 mmol/L酢酸アンモニウム含有0.1%酢酸水溶液			
移動相B	0.1%酢酸メタノール			
グラジエント	時間((分)	B液(%)	
	-	0.0	2	
	1.0		2	
	8.5		50	
	1	2.5	100	
	1	6.5	100	
	1	6.6	2	
	1	9.0	2	
流速	0.3 mL/min	カラム温度	40°C	
注入量	5 μL			





13 14

15 16

現時点のまとめ及び課題

まとめ
・精白米を対象とした30種力だ毒の一斉分析法を確立
・抽出一希釈という簡易な分析法(定量下限:0.25 ppb~20 ppb)

課題
・脂質や色素の多い食品では希釈のみでは分析が困難
・精製工程により一部の力だ毒は対象外となる可能性あり

課題への対応方針

候補1 ダブルフィルター精製法

抽出液を水で希釈して脂質を分離し、2連結フィルターでろ過 (参考:設樂紘史ほか,さいたま市健康科学研究センター年報,2019)

候補2 カビ毒ー斉分析用カラム

バイオタージ・ジャパン社製の一斉分析用カラムで精製

候補3 汎用精製カラムの最適化

所有しているカラムで溶出溶媒組成等を最適化する

今後の計画

☆ 令和4年度 : 分析方法の検討

☑ LC-MS/MS測定条件の最適化 ☑ 抽出・精製方法の比較検討

○ 令和5年度 : 分析方法の確立

□ 分析方法の決定 (麦類、ナッツ類、ワイン、ビール、茶など) □ 妥当性評価試験の実施 (精白米は完了)

○ 令和6年度 : 調査及び評価

□ 県内流通食品中のカビ毒含有量の調査

□ 暴露リスクの評価