<誌上発表>

OLaboratory-based surveillance of pertussis using multitarget real-time PCR in Japan: evidence for *Bordetella pertussis* infection in preteens and teens

• K. Kamachi¹⁾, S. Yoshino²⁾, C. Katsukawa³⁾, N. Otsuka¹⁾, Y. Hiramatsu¹⁾ and K. Shibayama¹⁾
¹⁾ Department of Bacteriology II, National Institute of Infectious Disease, Tokyo,
²⁾ Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki and ³⁾ Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka, Japan New Microbe New Infect 2015; 8: 70–74

Between January 2013 and December 2014, we conducted laboratory-based surveillance of pertussis using multitarget real-time PCR, which discriminates among *Bordetella pertussis*, *Bordetella parapertussis*, *Bordetella holmesii* and *Mycoplasma pneumoniae*.

Of 355 patients clinically diagnosed with pertussis in Japan, B. pertussis, B. parapertussis and M. pneumoniae were detected in 26% (n = 94), 1.1% (n = 4) and 0.6%(n = 2), respectively, whereas *B. holmesii* was not detected. It was confirmed that B. parapertussis and M. pneumoniae are also responsible for causing pertussis-like illness. The positive rates for *B. pertussis* ranged from 16% to 49%, depending on age. Infants aged ≤ 3 months had the highest rate (49%), and children aged 1 to 4 years had the lowest rate (16%, p < 0.01 vs. infants aged ≤ 3 months). Persons aged 10 to 14 and 15 to 19 years also showed high positive rates (29% each); the positive rates were not statistically significant compared with that of infants aged ≤ 3 months $(p \ge 0.06)$. Our observations indicate that similar to infants, preteens and teens are at high risk of *B. pertussis* infection.

ODefining the Genome Features of *Escherichia* albertii, an Emerging Enteropathogen Closely Related to Escherichia coli •T. Ooka¹⁾, Y. Ogura²⁾, K. Katsura³⁾, K. Seto⁴⁾, H. Kobayashi⁵⁾, K. Kawano⁶⁾, E. Tokuoka⁷⁾, M. Furukawa⁷), S. Harada⁷), S. Yoshino⁶), J. Seto⁸), T. Ikeda⁹⁾, K. Yamaguchⁱ⁹⁾, K. Murase³⁾, Y. Gotoh³⁾, N. Imuta¹⁾, J. Nishi¹⁾, Ta[^] nia A. Gomes¹⁰⁾, Lothar Beutin¹¹⁾, and Tetsuya Hayashi²⁾ ¹⁾Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan, ²⁾Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan, ³⁾Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan, ⁴⁾Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan, ⁵⁾Center for Animal Disease Control and Prevention, National Institute of Animal Health, Ibaraki, Japan, ⁶⁾Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki, Japan, ⁷⁾Division of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan, ⁸⁾Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan, ⁹⁾Department of Infection Diseases Bacteriology, Hokkaido Institute of Public Health, Hokkaido, Japan, ¹⁰⁾Departamento de Microbiologia, Imunologiae Parasitologia, Universidade Federal de Sa^o Paulo-Escola Paulista de Medicina, Brazil, ¹¹⁾National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR), Berlin, Germany Genome Biol Evol. 2015 Nov 3;7(12):3170-9. doi: 10.1093/gbe/evv211.

Escherichia albertii is a recently recognized close relative of *Escherichia coli*. This emerging enteropathogen possesses a type III secretion system (T3SS) encoded by the locus of